Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •
Answer:
Conductors have magnetic fields; insulators do not have magnetic fields. Conductors do not have magnetic fields; insulators do have magnetic fields. ... In a conductor, electric current cannot flow freely; in an insulator, it can flow freely.
Answer:
a) 4.45 m/s
b) 0.9 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

a) The vertical speed when the player leaves the ground is 4.45 m/s

Time taken to reach the maximum height is 0.45 seconds

Time taken to reach the ground from the maximum height is 0.45 seconds
b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds
<span>436 km
The conversion factor between kilocalorie/hour and watts is 1.163 (1 kcal/hr = 1.163 watt). So let's convert the energy consumption of the bird from watts to kcal/hr
3.7 w / 1.163 w hr/kcal = 3.18 kcal /hr
1 gram of fat has 9 kcal, so the total number of kcals consumed will be 4 * 9 = 36.
So the bird can fly for 36/3.18 = 11.32 hours
The distance traveled will be
11.32 h * 3600 s/h * 10.7 m/s / 1000 m/km = 436 km</span>