He arranged his periodic table by each elements atomic mass
Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
For an ideal transformer power loss is assumed to be zero
i.e. the power in primary coil due to input voltage must be equal to power in secondary coil due to output voltage
this can be written in form of equation

here we know that


![i_1 = 10 A{/tex]now we will use above equation[tex]140*3.5 = 10 * V_1](https://tex.z-dn.net/?f=i_1%20%3D%2010%20A%7B%2Ftex%5D%3C%2Fp%3E%3Cp%3Enow%20we%20will%20use%20above%20equation%3C%2Fp%3E%3Cp%3E%5Btex%5D140%2A3.5%20%3D%2010%20%2A%20V_1)

So primary coil voltage is 49 Volts
Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
I'm assuming the question is time it will take for ball to reach ground, if it is then set equation to zero then use the quadratic formula, the possible t value is your answer then