Answer:
4.1 m
Explanation:
Given :
Mass of the block = m = 2 kg.
Initial velocity =
= 8 m/s
Angle of the incline = α = 30°
Coefficient of friction = μ = 0.35
Distance moved up the incline is calculated using the work energy theorem.
Work done by the net force = change in kinetic energy of the object.
Net work = work done by friction + work done by the gravity component.
(- mg sin 30 - μ mg cos 30 ) d = 
m cancels out when divided on both sides with m.
- [(9.8 sin 30 - ( 0.35 × 9.8 × cos 30) ] d = 1/2 ( 0² - 8² )
⇒ -7.87 d = -32
⇒ Distance traveled up the incline = d = 4.0658 m = 4.1 m
The distance covered is 1000 m
Explanation:
The rocket is moving by uniformly accelerated motion, so we can find the distance it covers by using the following suvat equation:

where
s is the distance covered
v is the final velocity
t is the time
a is the acceleration
For the rocket in this problem, we have:
v = 445 m/s is the final velocity
is the acceleration
t = 4.50 s is the time
Substituting, we find the distance covered:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
Answer:
LET THE BODIES HIT THE FLOOOR
Step-by-step explanation:
Answer:
Step-by-step explanation:
Explanation:geman tick kokkok
qbrooooooooooooooooooooooooooooooooooooooo
Average speed = (total distance covered) / (time to cover the distance)
-- Traveling at 40 mph for 1 hour, the distance covered is 40 miles.
-- Traveling at 60 mph for 1 hour, the distance covered is 60 miles.
-- Total distance covered = (40 miles) + (60 miles) = 100 miles
-- Total time = (1 hour) + (1 hour) = 2 hours
-- Average speed = (100 miles) / (2 hours)
<em>Average speed = 50 miles per hour</em>