Answer:
9.934 m/s²
Explanation:
Given:
Initial speed of the Bugatti Veyron Super Sport = 0 mi/h
Final speed of the Bugatti Veyron Super Sport = 60 mi/h
Now,
1 mi/h = 0.44704 m / s
thus,
60 mi/h = 0.44704 × 60 = 26.8224 m/s
Time = 2.70 m/s
Now,
The acceleration (a) is given as:
thus,
or
a = 9.934 m/s²
Hy tikki! I've asked some questions, so of you find the questions as easy, then answer it. I'll surely mark you as brainliest :)
Answer:
D = 2.38 m
Explanation:
This exercise is a diffraction problem where we must be able to separate the license plate numbers, so we must use a criterion to know when two light sources are separated, let's use the Rayleigh criterion, according to this criterion two light sources are separated if The maximum diffraction of a point coincides with the first minimum of the second point, so we can use the diffraction equation for a slit
a sin θ = m λ
Where the first minimum occurs for m = 1, as in these experiments the angle is very small, we can approximate the sine to the angle
θ = λ / a
Also when we use a circular aperture instead of slits, we must use polar coordinates, which introduce a numerical constant
θ = 1.22 λ / D
Where D is the circular tightness
Let's apply this equation to our case
D = 1.22 λ / θ
To calculate the angles let's use trigonometry
tan θ = y / x
θ = tan⁻¹ y / x
θ = tan⁻¹ (4.30 10⁻² / 140 10³)
θ = tan⁻¹ (3.07 10⁻⁷)
θ = 3.07 10⁻⁷ rad
Let's calculate
D = 1.22 600 10⁻⁹ / 3.07 10⁻⁷
D = 2.38 m
D. 51 N. The minimum applied force that will cause the television slide is 51 N.
In order to solve this problem we have to use the force of static friction equation Fs = μs*n, where μs is the coefficient of static friction, and n is the normal force m*g.
With μs = 0.35, and n = 15kg*9.8m/s² = 147 N
Fs = (0.35)(147 N)
Fs = 51.45 N
Fs ≅ 51 N
Answer:

Now,buyantant force

so;




Now,



And now,



Hence that,specific density of a given body is 3
please mark me as brainliest, please