I believe the answer is B, a real and inverted image is formed on the side of the lens opposite the rubber ducky. The focal length is 15 cm and therefore the center of curvature (2F) will be 30 cm. When the object is placed between F and 2F (in this case 20 cm) in front of a convex lens, an inverted, real image is formed on the other side of the lens.
Looks like you need to review through the lesson and take notes as it tells you in the lesson what each of these are.
Answer:
v = 2.45 m/s
Explanation:
first we find the time taken during this motion by considering the vertical motion only and applying second equation of motion:
h = Vi t + (1/2)gt²
where,
h = height of cliff = 15 m
Vi = Initial Vertical Velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
15 m = (0 m/s) t + (1/2)(9.8 m/s²)t²
t² = (15 m)/(4.9 m/s²)
t = √3.06 s²
t = 1.75 s
Now, we consider the horizontal motion. Since, we neglect air friction effects. Therefore, the horizontal motion has uniform velocity. Therefore,
s = vt
where,
s = horizontal distance covered = 4.3 m
v = original horizontal velocity = ?
Therefore,
4.3 m = v(1.75 s)
v = 4.3 m/1.75 s
<u>v = 2.45 m/s</u>
Answer:
a)3.5s
b)28.57m/S
c)34.33m/S
d)44.66m/S
Explanation:
Hello!
we will solve this exercise numeral by numeral
a) to find the time the ball takes in the air we must consider that vertically the ball experiences a movement with constant acceleration whose value is gravity (9.81m / S ^ 2), that the initial vertical velocity is zero, we use the following equation for a body that moves with constant acceleration

where
Vo = Initial speed
=0
T = time
g=gravity=9.81m/s^2
y = height=60m
solving for time

T=3.5s
b)The horizontal speed remains constant since there is no horizontal acceleration.
with the value of the distance traveled (100m) and the time that lasts in the air (3.5s) we estimate the horizontal speed

c)
to find the final vertical velocity we use the equations for motion with constant velocity as follows
Vf=Vo+g.t
Vf=0+(9.81 )(3.5)=34.335m/S
d)Finally, to find the resulting velocity, we add the horizontal and vertical velocities vectorially, this is achieved by finding the square root of the sum of its squares

The temperature rises until the water reaches the next change of state — boiling. As the particles move faster and faster, they begin to break the attractive forces between each otherand move freely as steam — a gas. The process by which a substance moves from the liquid state to the gaseousstate is called boiling.