Answer: b. Throw it directly away from the space station.
Explanation:
According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.
Answer: Velocity can best be described as, the speed in a given direction.
Explanation: To find the answer, we need to know more about the Velocity of a body.
<h3>What is Velocity of a body?</h3>
- Velocity is the rate of change of displacement.
- It's a vector quantity and is measured in m/s.
- It can be positive, negative or zero.
- A body is said to be in uniform motion, then its velocity remains constant.
- Change in velocity can be a change in speed.
- The magnitude of velocity is less than or equal to speed.
Thus, we can conclude that, the option C is best describing velocity.
Learn more about velocity here:
brainly.com/question/28108466
#SPJ4
Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-
Answer:
B it decreases
Explanation:
the movement of a positive test charge in the direction of an electric field would be like a mass falling downward within Earth's gravitational field. Both movements would be like going with nature and would occur without the need of work by an external force. This motion would result in the loss of potential energy
Hi my friend, since momentum is always conserved without external forces, the momentum after the collosion will still be 0.06 kg*m/s. Hope it helps☺