Answer:
HPRT
Explanation:
HPRT catalyzes the salvage reactions of hypoxanthine and guanine with PRPP to form IMP and GMP
The formation of GMP from IMP requires oxidation at C-2 of the purine ring, followed by a glutamine-dependent amidotransferase reaction that replaces the oxygen on C-2 with an amino group to yield 2-amino,6-oxy purine nucleoside monophosphate, or as this compound is commonly known, guanosine monophosphate.
The answer is b, because all of the other compounds are covelent
in order for a scientific theory to become a scientific law it needs to be tested with generations of data to confirm that it is really true.
Answer:
Which sequence of events is required to form a limestone cave where you can walk around and observe cave formations, such as stalactites? (Note: stalactites hang from the ceiling - they have to hold on tight to the roof.)
A geological sequence of events as involving the lowering of the water table to expose cave structures where stalactites and stalagmites form which is described as follows,
Explanation:
1. Acidic percolated water formed cavities of solution beneath the natural water table known as phreatic zone
2. After the passage of time there is a drop in the water table dropped forming caves from cavities
3. These caves, which are air filled voids that contains adequate environment for forming stalactites and stalagmites and where they are found
When utilizing the gravimetric method, it is crucial to completely dissolve your sample in 10 mL of water. A quantitative technique called gravimetric analysis employs the selective precipitation of the component under study from an aqueous solution.
A group of techniques known as gravimetric analysis are employed in analytical chemistry to quantify an analyte based on its mass. Gravimetric analysis is a quantitative chemical analysis technique that transforms the desired ingredient into a substance (of known composition) that can be extracted from the sample and weighed. This is a crucial point to remember.
Gravimetric water content (g) is therefore defined as the mass of water per mass of dry soil. To calculate it, weigh a sample of wet soil, dry it to remove the water, and then weigh the dried soil (mdry). Dimensions of the sample Water is commonly forgotten despite having a density close to one.
To know more about gravimetry, please refer:
brainly.com/question/18992495
#SPJ4