Answer:
102000 kg
Explanation:
Given:
A total Δν = 15 km/s
first stage mass = 1000 tonnes
specific impulse of liquid rocket = 300 s
Mass flow rate of liquid fuel = 1500 kg/s
specific impulse of solid fuel = 250 s
Mass flow of solid fuel = 200 kg/s
First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds
Now,
Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg
Also,
Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg
Therefore,
The total jettisoned mass flow of the fuel in first stage
= 90000 kg + 12000 kg
= 102000 kg
11m if you add 6+5 you get 11 but of course you need the “m” in the mix so 11m but correct me if I’m wrong.
2 seconds,,,,,,,,,,,,,,,,,,,,,,,
<span>The answer to this problem is magnesium. I hoped I helped someone with this</span>
To solve this problem we will apply the concepts related to energy conservation. So that the initial energy on the system is equivalent to the final energy.
The initial or final energy will also be the TOTAL mechanical energy of the body.
In the case of the initial energy we will have two types of energy on the body: Kinetic energy and potential energy.
For the case of the final energy we will only have the potential energy in terms of the height
, the mass m, and the gravity g




The total mechanical energy will be equivalent in the terms required, to the final potential energy.