Answer:
B. use light of a shorter wavelength.
Explanation:
We know that

h= plank's constant
c= speed of light
λ= wavelength of the incident light
so, in order to have sufficient energy for for the emission of electron, the incident's radiation must have λ small enough.
B. use light of a shorter wavelength.
Answer:
0.8 meters.
I just answered this ame question myself on a test I was taking.
Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 
The dog does not go through metamorphosis.
<span>Your flexibility decreases. But if you exercise or stretch a few times a week you can slow down the process </span>