Answer:
The number of lines possible for SO2 is 3
Explanation:
The following Procedure should be followed when calculating the number of vibrational modes:-
- Identify if the given molecule is either linear or non-linear
- Calculate the number of atoms present in your molecule
- Place the value of n in the formula and solve.
SO2 is a non-linear molecule because it contains a lone pair which causes the molecule to bent in shape hence, The mathematical formula for calculating the number of non-linear molecule in a infrared region is (3n - 6) here n is the number of atoms in molecule.
hence for Sulphur Dioxide (SO2), n will be 3
<u> Therefore, The number of lines possible for SO2 is (3*3) - 6 = 3</u>
In keeping with the general trends, K-Br will have the smallest bond energy. The bond energy refers to the energy that keeps the atoms in a bond together.
<h3>What is bond energy?</h3>
Bond energy is the energy that is required to hold atoms together in a bond. This energy must also be supplied when the atoms are to be separated.
We have the bond energies of each of the bons in the question, we have to note that the the smallest value of bond energy is Na-Br hence in keeping with the general trends, K-Br will have the smallest bond energy.
Learn more about bond energies: brainly.com/question/14842720?
This would be c as for the amswer
Water has a chemical formula of H2O. This means that for every 2 moles of hydrogen and 1 mole of oxygen, one mole of water will be formed.
Note that hydrogen gas and oxygen gas are both biatomic molecules.
(1) (182 mol H2) x (1 mol H2O/ 1 mol H2) = 182 mol H2O
(2) (86 mol O2) x (2 mol H2O / 1 mol O2) = 172 mol H2O
We choose the smaller number of the two as the answer to this item. Thus, the answer to this question is 172 mol of H2O can be formed out of the given quantities.
The periodic table of elements arranges all of the known chemical elements in an informative array. Elements are arranged from left to right and top to bottom in order of increasing atomic number. Order generally coincides with increasing atomic mass. The rows are called periods.