1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
6

A force does work on an object if a component of the force:a. is perpendicular to the displacement of the object b. is parallel

to the displacement of the objectc. is crossing the line of axis d. both a and b are correct
Physics
1 answer:
MAVERICK [17]3 years ago
8 0

As we know that total work done by a force is given by

W = F.d

W = Fdcos\theta

so it is product of force and displacement along same direction

as we can write it as

W = (Fcos\theta)(d)

so it must be the product of force and displacement in same directions so correct answer must be

<u>b. is parallel to the displacement of the object</u>

You might be interested in
A small rubber ball is thrown at a heavier, larger basketball that is still. The small ball bounces off the basketball. Assume t
svp [43]
The forces are the same for part A 
6 0
3 years ago
Read 2 more answers
Emboldened by the success of their late night keg pull in Exercise 61 above, our intrepid young scholars have decided to pay hom
alexdok [17]

Answer is answer

XD                                ssssss

5 0
3 years ago
Which of the following statements about electromagnetic radiation are TRUE? a. Wavelength and frequency are inversely proportion
Kobotan [32]

Answer: A) Wavelength and frequency are inversely proportional.

Explanation:

From the wave equation;

Velocity= frequency × wavelength

If the above equation is rearranged making the frequency the subject of formula, it would give;

Frequency= velocity/ wavelength.

From the above equation we see that frequency is inversely proportional to the wavelength. This means that for every increase in wavelength there would be a decrease in frequency, and for every increase in frequency there is a reduction in wavelength.

7 0
3 years ago
The flagpole is held vertical by two ropes. The first of these ropes has a tension in it of 100 N and is at an angle of 60° to t
KatRina [158]

Answer:

T₂ = 123.9 N,  θ = 66.2º

Explanation:

To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.

The tension T1 = 100 N, we create a reference frame centered on the pole

X axis

       T₁ₓ - T_{2x} = 0

        T_{2x}= T₁ₓ

Y axis y

      T_{1y} + T_{2y} - 200N = 0

      T_{2y} = 200 -T_{1y}

let's use trigonometry to find the component of the stresses

         sin 60 = T_{1y} / T₁

         cos 60 = t₁ₓ / T₁

         T_{1y} = T₁ sin 60

         T1x = T₁ cos 60

         T_{1y}y = 100 sin 60 = 86.6 N

         T₁ₓ = 100 cos 60 = 50 N

for voltage 2 it is done in the same way

         T_{2y} = T₂ sin θ

         T₂ₓ = T₂ cos θ

we substitute

         

           T₂ sin θ= 200 - 86.6 = 113.4

           T₂ cos θ = 50              (1)

to solve the system we divide the two equations

           tan θ = 113.4 / 50

           θ = tan⁻¹ 2,268

           θ = 66.2º

we caption in equation 1

           T₂ cos 66.2 = 50

           T₂ = 50 / cos 66.2

           T₂ = 123.9 N

8 0
3 years ago
While entering a freeway, a car accelerates from rest at a rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the situation. (b)
ArbitrLikvidat [17]

Answer:

a) See attached picture, b) We know the initial velocity = 0, initial position=0, time=12.0s, acceleration=2.40m/s^{2}, c) the car travels 172.8m in those 12 seconds, d) The car's final velocity is 28.8m/s

Explanation:

a) In order to draw a sketch of the situation, I must include the data I know, the data I would like to know and a drawing of the car including the direction of the movement and its acceleration, just like in the attached picture.

b) From the information given by the problem I know:

initial velocity =0

acceleration = 2.40m/s^{2}

time = 12.0 s

initial position = 0

c)

unknown:

displacement.

in order to choose the appropriate equation, I must take the knowns and the unknown and look for a formula I can use to solve for the unknown. I know the initial velocity, initial position, time, acceleration and I want to find out the displacement. The formula that contains all this data is the following:

x=x_{0}+V_{x0}t+\frac{1}{2}a_{x}t^{2}

Once I got the equation I need to find the displacement, I can plug the known values in, like this:

x=0+0(12s)+\frac{1}{2}(2.40\frac{m}{s^{2}} )(12s)^{2}

after cancelling the pertinent units, I get that  my answer will be given in meters. So I get:

x=\frac{1}{2} (2.40\frac{m}{s^{2}} )(12s)^{2}

which solves to:

x=172.8m

So the displacement of the car in 12 seconds is 172.8m, which makes sense taking into account that it will be accelerating for 12 seconds and each second its velocity will increase by 2.4m/s.

d) So, like the previous part of the problem, I know the initial position of the car, the time it travels, the initial velocity and its acceleration. Now I also know what its final position is, so we have more than enough information to find this answer out.

I need to find the final velocity, so I need to use an equation that will use some or all of the known data and the unknown. In order to solve this problem, I can use the following equation:

a=\frac{V_{f}-V_{0} }{t}

Next, since I need to find the final velocity, I can solve the equation just for that, I can start by multiplying both sides by t so I get:

at=V_{f}-V_{0}

and finally I can add V_{0} to both sides so I get:

V_{f}=at+V_{0}

and now I can proceed and substitute the known values:

V_{f}=at+V_{0}

V_{f}=(2.40\frac{m}{s^{2}}} (12s)+0

which solves to:

V_{f}=28.8m/s

8 0
3 years ago
Read 2 more answers
Other questions:
  • Sociologist use tools such as investigation and data collection to make their study more
    11·1 answer
  • Consider an electric dipole in a uniform electric field. In which orientation does the dipole-field system have the greatest pot
    12·1 answer
  • An isolated system consists of a 1.5 kg mass moving in the presence of the following potential energy function: U open parenthes
    8·1 answer
  • An electron remains suspended between the surface of the Earth (assumed neutral) and a fixed positive point charge, at a distanc
    12·1 answer
  • Dana is on a train traveling at a speed of 20 km/h. Dana walks from the front of the train to the back of the train at a speed o
    10·1 answer
  • Use the drop-down menu to complete the statement. An electron in the first energy level of the electron cloud has an electron in
    12·2 answers
  • If you added sand to your coffee, what kind of mixture would your coffee now<br> be?
    13·1 answer
  • If substance a and substance b have very different values for the index of refraction, what will happen to a light ray that pass
    13·1 answer
  • What object currently has the most gravitational potential energy?<br><br>A, B, C, or D​
    5·1 answer
  • Two people hear a tornado siren, but one listener is 81.9 times farther away from the source of the sound than the other. What i
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!