Answer:
No, its not possible for water to dissolve almost anything in the universe.
Explanation:
Solubility of a solute defines the ability of that solute to dissolve in a given solvent. It is defined as the maximum amount of solute dissolved in a solvent at equilibrium. The solution which results from dissolving this maximum amount is called a saturated solution, and one it has been reached, no more solute can be dissolved in it.
Different substances in the universe have diffferent solubilities in water, some very high (soluble) (eg. sugar and salt) and some very low (insoluble) (eg plastics). The substances that are able to form bonds with water (Hydrogen or Ionic) are more soluble than those who are not able to do so.
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:

171.0798 M/S
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Was this helpful
Answer:
Height = 53.361 m
Explanation:
There are two balloons being thrown down, one with initial speed (u1) = 0 and the other with initial speed (u2) = 43.12
From the given information we make the following summary
= 0m/s
= t
= 43.12m/s
= (t-2.2)s
The distance by the first balloon is

where
a = 9.8m/s2
Inputting the values

The distance traveled by the second balloon

Inputting the values

simplifying

Substituting D of the first balloon into the D of the second balloon and solving

Now we know the value of t. We input this into the equation of the first balloon the to get height of the apartment

Surface tension - My definition -
It's exactly what it says - The tension of a surface with a liquid (such as water), caused by the attraction of the surfaces layer ---- I hope this helps ---- I actually did research it and got some of this from a dictionary, but I changed some of it, too.... Sorry if this doesn't help :)