First we will calculate free energy change:
ΔG₀ = ΔH₀ - (T * ΔS₀)
= - 793 kJ - (298 * - 0.319 kJ/K) = - 698 kJ
We know the relation between free energy change and cell potential is:
ΔG₀ = - n F E⁰ where
F = Faraday's constant = 96485 C/mol
n = 2 (given by equation that the electrons involved is 2)
ΔG₀ = - 2 x 96485 x E⁰
- 698 kJ = - 2 x 96485 x E⁰
E⁰ = (698 x 1000) / (2 x 96485) = 3.62 volts
Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³
Global warming, Cosmic Background radiation (even though most is blocked not ALL), and pollution.
massive livand that sarah or someone is how u do it
The correct option is STRONTIUM.
Strontium is a group 2 element, that means it has two electrons in its outermost shell. This element will prefer to lose these two electrons in its outermost shell in order to attain the octet form, therefore, it will form electrovalent bond with non metals which it can donate two electrons to.