The required volume of water is 0.18 liters.
<h3>What is molarity?</h3>
Molarity of any solution is define as the number of moles of solute present in per liter of solution as;
M = n/V
Moles of solute will be calculated as:
n = W/M, where
W = given mass of HCl = 32g
M = molar mass of HCl = 36.4g/mol
n = 32 / 36.4 = 0.88 mole
Given molarity of solution = 4.80M
On putting all values in the above equation, we get
V = (0.88) / (36.4) = 0.18 L
Hence required volume of water is 0.18L.
To know more about volume & concentration, visit the below link:
brainly.com/question/26762947
#SPJ1
Could you please describe the question?
lmk once you are done!!
support me by marking as brainliest!!
Buffer solution resist the change in pH upon addition of small amount of strong acid or strong base.
Buffer consists of weak acid as HF / and its conjugate base NaF
When strong acid as HCl is added to buffer, it respond with its conjugate base to convert the strong acid to weak acid like this:
HCl (S.A) + NaF → NaCl + HF (W.A)
moles of HF we already have = M * V(in liters)
= 0.0955 M * 0.033 L = 3.15 x 10⁻³ mole
moles of HCl added = 8.00 x 10⁻⁵ mole
one mole HCl reacts with 1 mole NaF to give 1 mole HF
so the amount added to HF = 8.00 x 10⁻⁵
Total moles of HF present = (3.15 x 10⁻³) + (8.00 x 10⁻⁵) = 3.23 x 10⁻³ mole
Answer:
nvnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnv
Explanation:
Answer : The correct option is, (b) occur when there is more free energy in the reactants than the products.
Explanation :
Endergonic reactions : It i defined as the reaction in which the energy is absorbed during the reaction.
In endergonic reactions, the Gibbs free energy of product is lower than the reactants. That means, ΔG > 0 and the reaction is non-spontaneous.
Exergonic reactions : It i defined as the reaction in which the energy is released during the reaction.
In exergonic reactions, the Gibbs free energy of product is greater than the reactants. That means, ΔG < 0 and the reaction is spontaneous.
Hence, the endergonic reactions is occur when there is more free energy in the reactants than the products.