Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Hey!!
here is your answer >>>
The answer for your question is the tension. We lift it up and the tension is exerted by the object downwards!.
Hope my answer helps!
[H_{3}O^{+}] = 0.00770 M
The equilibrium equation representing the dissociation of 

Given [H_{3}O^{+}] = 0.00770 M
Let the initial concentration of acid be x and change y
So y =
=
= 0.00770 M



0.00257 x - 0.00001979 = 0.00005929
x = 0.031 M
Therefore, initial concentration of the weak acid is <u>0.031 M</u>
Answer:
8.73
Explanation:
The concentration of acetic acid can be determined as follows:






Moles of
= 
=0.0090 moles
Moles of 
= 0.0090 moles
The equation for the reaction can be expressed as :
----->

Concentration of
ion = 
= 
= 0.052 M
Hydrolysis of
ion:
----->


⇒ 
= 
As K is so less, then x appears to be a very infinitesimal small number
0.052-x ≅ x





![[OH] = x =0.535*10^{-5}](https://tex.z-dn.net/?f=%5BOH%5D%20%3D%20x%20%3D0.535%2A10%5E%7B-5%7D)
![pOH = -log[OH^-]](https://tex.z-dn.net/?f=pOH%20%3D%20-log%5BOH%5E-%5D)
![pOH = -log[0.535*10^{-5}]](https://tex.z-dn.net/?f=pOH%20%3D%20-log%5B0.535%2A10%5E%7B-5%7D%5D)

pH = 14 - pOH
pH = 14 - 5.27
pH = 8.73
Hence, the pH of the titration mixture = 8.73