516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473
Answer: A satellite with a mass of 110 kg and a kinetic energy of 3.08×10^9 J must be moving at a speed of 7483 m/s.
Explanation: To find the answer we need to know about the kinetic energy of a body.
<h3>
How to solve the problem the equation of kinetic energy?</h3>
- We have the expression for kinetic energy of a body as,


- We have to find the speed of the satellite,

Thus, we can conclude that, the velocity of the satellite will be 7438m/s.
Learn more about Kinetic energy here:
brainly.com/question/28105739
#SPJ4
c.The warm surface water results in moist air and more rainfall.
Explanation:
- During upwelling, cold water in the ocean is stirred up and brought to the surface.
- The warmer surface water is then taken into deeper parts of the ocean.
- Upwelling allows for nutrient mixing in the ocean and allows for useful gases to circulate well.
- The warm surface water causes the air to be moisty.
- When the air is carried landward towards the coast, it leads to rainfall when the saturated air releases the water.
- The air then becomes cold and dry and it rises up.
- Therefore, warm surface water results in moist air and more rainfall.
Learn more:
Ocean current brainly.com/question/4117397
#learnwithBrainly
Explanation:
a) The rope obeys Hooke's law, so:
F = k Δx
The elastic energy in the rope is:
EE = ½ k Δx²
Or, in terms of F:
EE = ½ F Δx
Use trigonometry to find the stretched length.
cos 20° = 35 / x
x = 37.25
So the displacement is:
Δx = 37.25 − 24
Δx = 13.25
The elastic energy per rope is:
EE = ½ (3.7×10⁴ N) (13.25 m)
EE = 245,000 J
There's two ropes, so the total energy is:
2EE = 490,000 J
Rounded to one significant figure, the elastic energy is 5×10⁵ J.
b) The elastic energy in the ropes is converted to gravitational energy.
EE = PE = mgh
5×10⁵ J = (1.2×10³ kg) (9.8 m/s²) h
h = 42 m
Rounded to one significant figure, the height is 40 m. So the claim is not justified.