Heya!!
For calculate aceleration, lets applicate second law of Newton:

<u>Δ Being Δ</u>
F = Force = 183 N
m = Mass = 367 kg
a = Aceleration = ?
⇒ Let's replace according the formula and clear "a":

⇒ Resolving

Result:
The aceleration is <u>0,49 meters per second squared (m/s²)</u>
Good Luck!!
Answer:
1595790 gallons
Explanation:
Given that;
3.8 L = 1 US gallon
303,200.0 liters = 303,200.0 * 1/ 3.8 = 79789.5 gallons
If a wave is made every 90 seconds which is 1.5 mins
Then;
Number of waves made in 30 minutes = 30/1.5 = 20 waves
if each uses 79789.5 gallons, then 20 waves will use 20 * 79789.5 gallons = 1595790 gallons
Answer:
The force of gravity
Explanation:
Gravity was studied, by early scientists such as Copernicus and others, Galileo was the first to ensure that planets moved according to a physical equation that depended on a force that caused celestial bodies to move and interact with each other. But years later Newton based on studies conducted deciphering what Galileo assumed, he was able to find the equation of the force of gravity in any body in the universe. This equation depends on the masses of the two interacting bodies, the distance between them and a constant, which I call universal gravitation constant.

Fg = gravity force [N]
G = universal gravitation constant = 6.67*10^(-11) [N*m^2/kg^2]
m1 = mass of the 1st body [kg]
m2 = mass of the 2nd body [kg]
r = distance between the bodies [meters]
<span>So we want to know how did the planets form in the Solar system. So the current most accepted explanation is accretion. First the Sun formed, and what has left was a disk made out of gas and dust which later formed the planets trough attractive gravitational force.</span>
Answer:
The car C has KE = 100, PE = 0
Explanation:
The principle of conservation of energy states that although energy can be transformed from one form to another, the total energy of the given system remains unchanged.
The energy that a body possesses due to its motion or position is known as mechanical energy. There are two kinds of mechanical energy: kinetic energy, KE and potential energy, PE.
Kinetic energy is the energy that a body possesses due to its motion.
Potential energy is the energy a body possesses due to its position.
From the principle of conservation of energy, kinetic energy can be transformed into potential energy and vice versa, but in all cases the energy is conserved or constant.
In the diagram above, the cars at various positions of rest or motion are transforming the various forms of mechanical energy, but the total energy is conserved at every point. At the point A, energy is all potential, at B, it is partly potential partly kinetic energy, However, at the point C, all the potential energy has been converted to kinetic energy. At D, some of the kinetic energy has been converted to potential energy as the car climbs up the hill.
Therefore, the car C has KE = 100, PE = 0