Answer: a. It receives a hydrogen ion.
Explanation: Base is a species which is capable of donating its negative quantity and accepting the positive one.
For example, ammonia is considered as a base because it is capable of donating its lone pairs of electrons and can accept an proton as well.
Here, out of the given options, Hydrogen
is a proton which is acting as a positive species and hydroxide ion
is a negative species.
Thus, option (A) is the correct answer as it will receive a hydrogen ion from another base making itself a conjugate acid.
<h2>Hello!</h2>
The answer is: -97.37° C
<h2>Why?</h2>
According to the Charles and Gay-Lussac's Law we have that:

Where:
<em>v</em> is the volume of the gas
<em>t</em> is the temperature of the gas
<em>k </em>is the proportionality constant
From the Gay-Lussac's Law we also have the following relation:

Since we need to find the new temperature (T2) we can use the last equation:

We are asked to find the temperature in Celsius degrees, so, we must convert the result (in K) to Celsius degrees:

So, the temperature is -97.37° C
Have a nice day!
Answer:
deforestation not only removes vegetation that is important for removing carbon dioxide from the air.
Answer:
a. add a little distilled water to see which layer the water adds to
Explanation:
The problem tells us to keep in mind two major aspects of the test: It has to be <em>simple</em>, as well as <em>non-destructive</em>:
- Adding distilled water can be made in under a minute, without requiring specialized laboratory equipment, unlike IR.
- It is also non-destructive, because the contents on either layer won't change due to the added distilled water.
Answer:
(1) Bromination, (2) E2 elimination and (3) epoxidation
Explanation:
- In the first step, -OH group in cyclopentanol is replaced by more facile leaving group Br by treating cyclopentanol with

- In the second step, E2 elimination in presence of strong base e.g. NaOEt/EtOH produce cyclopentene
- In the third step, treatment of cyclopentene with mCPBA produces 1,2-epoxycyclopentane
- Full reaction scheme has been shown below