1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
3 years ago
6

Two sticky spheres are suspended from light ropes of length LL that are attached to the ceiling at a common point. Sphere AA has

mass 2mm and is hanging at rest with its rope vertical. Sphere BB has mass mm and is held so that its rope makes an angle with the vertical that puts BB a vertical height HH above AA. Sphere BB is released from rest and swings down, collides with sphere AA, and sticks to it.
In terms of H,H, what is the maximum height above the original position of A reached by the combined spheres after their collision?
Physics
1 answer:
a_sh-v [17]3 years ago
6 0

Answer:

  h’ = 1/9 h

Explanation:

This exercise must be solved in parts:

* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy

starting point. Higher

         Em₀ = U = m g h

final point. Lower, just before the crash

         Em_f = K = ½ m v_{b}^2

energy is conserved

         Em₀ = Em_f

         m g h = ½ m v²

         v_b = \sqrt{2gh}

* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved

initial instant. Just before the crash

         p₀ = 2m 0 + m v_b

final instant. Right after the crash

         p_f = (2m + m) v

       

the moment is preserved

         p₀ = p_f

         m v_b = 3m v

         v = v_b / 3

         

          v = ⅓ \sqrt{2gh}

* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together

Starting point. Lower

          Em₀ = K = ½ 3m v²

Final point. Higher

          Em_f = U = (3m) g h'

          Em₀ = Em_f

          ½ 3m v² = 3m g h’

           

we substitute

         h’=  \frac{v^2}{2g}

         h’ =  \frac{1}{3^2} \  \frac{ 2gh}{2g}

         h’ = 1/9 h

You might be interested in
What is the kinetic energy of an automobile with a mass of 1252 kg traveling at a speed of 12 m/s?
torisob [31]
KE = 1/ 2 * 1252 * 144
 as  KE = 1/2 * m * v ^2
 = 90144 J



4 0
3 years ago
Which is a component of pseudoscience, but not science?
quester [9]

Answer:

The statements, observations, beliefs and suppositions all are the components of the pseudoscience.

Explanation:

The claims included in the pseudoscience including the beliefs, statements and practices are claimed to be scientific but these are devoid of any scientific evidences provided by the experimental procedures.

5 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°c and convection heat transfer
Elodia [21]
200 degrees because I need the points
4 0
3 years ago
A 325 N force applied to an object for 5.5 s. What’s the impulse?
vazorg [7]
According to Newton second law of motion, the resultant force is directly proportional to the rate of change in momentum while maintaining other factors constant. Therefore, F = (mv-mu)/t where F is the resultant force , m is the mass of the object, v is the final velocity and u is the initial velocity.
Hence, Ft = mv-mu, but impulse is given by force multiplied by time, thus, impulse is equivalent to the change in momentum.
Impulse = Ft
              = 325 × 2.2 sec
              = 715 Ns
4 0
3 years ago
A 30.0 kg box hangs from a rope. What is the tension (in N) in the rope if the box has an initial velocity of 2.0 m/s and is slo
hjlf

Answer:

360 N

Explanation:

m = 30kg    u = 2 m/s     a = -2m/s/s

Since the object has an initial velocity of 2 m/s and acceleration of -2 m/s/s

the object will come to rest in 1 second but the force applied in that one second can be calculated by:

F = ma

F = 30 * -2

F = -60 N (the negative sign tells us that the force is acting downwards)

Now, calculating the force applied on the box due to gravity

letting g = -10m/s/s

F = ma

F = 30 * -10

F = -300 N (the negative sign tells us that the force is acting downwards)

Now, calculating the total downward force:

-300 + (-60) = -360 N

<em></em>

<em>Hence, a downward force of 360 N is being applied on the box and since the box did not disconnect from the rope, the rope applied the same amount of force in the opposite direction</em>

Therefore tension on the force = <u>360 N</u>

5 0
3 years ago
Other questions:
  • Which segment of the graph represents constant speed? Explain your answer.
    11·1 answer
  • A fluid is flowing through a circulat tube at 0.4 kg/s. Tube inner surface is smooth with a diameter 0.014 m. Fluid density is 9
    6·1 answer
  • The structure of which substances tends to exhibit the greatest hardness?
    14·1 answer
  • Explain convection in as little as possible
    10·2 answers
  • What is the speed of a wave that has a frequency of 45 Hz and a wavelength of 0.1 meters?
    14·2 answers
  • A car accelerates on a horizontal road due to the force exerted by :
    9·1 answer
  • A space craft is traveling in interplanetary space at a constant velocity. what is the estimated distance traveled by the space
    11·1 answer
  • If the population runs out of food after 6 hours, what would most likely happen to the graph line between 8 and 10 hours?
    12·2 answers
  • In which scenario will the two objects have the least gravitational force between them?​
    11·2 answers
  • URGENT PLEASE ANSWER
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!