1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
2 years ago
6

Two sticky spheres are suspended from light ropes of length LL that are attached to the ceiling at a common point. Sphere AA has

mass 2mm and is hanging at rest with its rope vertical. Sphere BB has mass mm and is held so that its rope makes an angle with the vertical that puts BB a vertical height HH above AA. Sphere BB is released from rest and swings down, collides with sphere AA, and sticks to it.
In terms of H,H, what is the maximum height above the original position of A reached by the combined spheres after their collision?
Physics
1 answer:
a_sh-v [17]2 years ago
6 0

Answer:

  h’ = 1/9 h

Explanation:

This exercise must be solved in parts:

* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy

starting point. Higher

         Em₀ = U = m g h

final point. Lower, just before the crash

         Em_f = K = ½ m v_{b}^2

energy is conserved

         Em₀ = Em_f

         m g h = ½ m v²

         v_b = \sqrt{2gh}

* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved

initial instant. Just before the crash

         p₀ = 2m 0 + m v_b

final instant. Right after the crash

         p_f = (2m + m) v

       

the moment is preserved

         p₀ = p_f

         m v_b = 3m v

         v = v_b / 3

         

          v = ⅓ \sqrt{2gh}

* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together

Starting point. Lower

          Em₀ = K = ½ 3m v²

Final point. Higher

          Em_f = U = (3m) g h'

          Em₀ = Em_f

          ½ 3m v² = 3m g h’

           

we substitute

         h’=  \frac{v^2}{2g}

         h’ =  \frac{1}{3^2} \  \frac{ 2gh}{2g}

         h’ = 1/9 h

You might be interested in
A white dwarf is:______.
bija089 [108]

Answer:

the exposed core of a dead star, supported by electron degeneracy pressure.

Explanation:

A white dwarf is a low luminosity exposed core of a dead star having mass comparable to the sun but volume comparable to the earth . So its density is very high . These stars have lost the capacity to generate energy through the process of fusion . Due to high gravitational energy , it goes on shrinking but ultimately balanced by electron degeneracy pressure. It is not a main sequence star as it has lost the power of fusion .

6 0
3 years ago
A 3.5 x 10-6 C charge is located 0.28 m from a 2.8 x 10-6 C charge. What is the magnitude of the force being exerted on the smal
Margarita [4]
The electrostatic force between two charges is given by Coulomb's law:
F=k_e  \frac{q_1 q_2}{r^2}
where
ke is the Coulomb's constant
q1 is the first charge
q2 is the second charge
r is the separation between the two charges

By substituting the data of the problem into the equation, we can find the magnitude of the force between the two charges:
F=(8.99 \cdot 10^{9} Nm^2C^{-2} ) \frac{(3.5 \cdot 10^{-6} N/C)(2.8 \cdot 10^{-6}N/C)}{(0.28m)^2}=1.2 N
7 0
3 years ago
Julie wants to know if adding calcium fertilizer to tomato plants will help prevent a disease of tomato plants called blossom-en
Ksivusya [100]
It's not true.

The crucial principle for a scientific experiment is to keep only ONE variable at a time.

In this case, the variable of this experiment is actually the tomato is in sunny part or in shady part, instead of whether applying Ca fertilizer. 
3 0
3 years ago
SI is considered a consistent system because it what
NemiM [27]

Answer:

because it is a worldwide system....

Explanation:

5 0
2 years ago
Calculate the kinetic energy in joules of a 1,500 kg car that is moving at a speed of 42 km/h
Rzqust [24]
Data:
KE (Kinetic Energy) = ? (Joule)
m (mass) = 1500 Kg 
v (speed) = 42 Km/h
converting to m/s (42 / 3.6), we have: v (speed) = 11.6 m/s

Formula:
K_{E} =   \frac{1}{2} m*v^2

Solving:
K_{E} = \frac{1}{2} m*v^2
K_{E} =  \frac{1}{2} *1500*(11.6)^2
K_{E} = \frac{1}{2} *1500*134.56
K_{E} =  \frac{201840}{2}
\boxed{\boxed{K_{E} = 100920\:Joule}}\end{array}}\qquad\quad\checkmark





4 0
3 years ago
Other questions:
  • A parallel-plate air capacitor is made from two plates 0.190 m square, spaced 0.770 cm apart. It is connected to a 120 V battery
    9·2 answers
  • Select all that apply.
    5·1 answer
  • 4
    8·1 answer
  • What is heat energy on earth escapes into space
    12·1 answer
  • The Americium nucleus, 241 95 Am, decays to a Neptunium nucleus, 237 93 Np, by emitting an alpha particle of mass 4.00260 u and
    14·1 answer
  • A cell phone charger operates at 5 volts and can deliver a maximum current of 1.0 Amp. If your cell phone has an energy storage
    8·1 answer
  • Xenon has an enthalpy of vaporization of 12.6 kJ/mol and a vapor pressure of 1.00 atm at –108.0 °C. What is the vapor pressure o
    6·1 answer
  • A copper rod of crosssectional area 0.500 cm2 and length 1.00 m is elongated by 2.00 * 10-2 mm and a steel rod of the same cross
    12·1 answer
  • You matter .<br>Until you Multiply yerself by the speed of Light Squared. <br>Then you Energy.<br>​
    5·2 answers
  • 1. What is the claim made by the Big Bang theory regarding the creation of the universe?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!