If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. We can calculate the concentration of CO₂ using Henry's law.

We can calculate the mass of CO₂ in 1.1 L considering its molar mass is 44.01 g/mol.

Now, we will repeat the same procedure for a partial pressure of 1.28 atm.


The mass of CO₂ released will be equal to the difference in the masses at the different pressures.

If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
Learn more: brainly.com/question/18987224
<em>The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. How much CO₂ gas (in g) will be released from 1.1 L of the carbonated water when the partial pressure of CO2 is lowered to 1.28 atm? At 25 ºC, the Henry’s law constant for CO₂ dissolved in water is 1.65 x 10⁻³ M/atm, and the density of water is 1.0 g/cm³.</em>
Answer:
depends on how many you have...
Explanation:
Answer:
we only see parts of the lit side as the moon goes around the earth
Explanation:
Unlike the sun, the moon orbits the Earth. This is the reason why we see the <em>different phases of the moon.</em> The reflection of the moon is being illuminated back to us with the help of the sun. So, as the moon circles the Earth, we only see parts of the lit side. Such changes helps us see the moon in different phases such as<em> </em>the <em>Third Quarter, Crescent, New Moon, Full Moon, etc.</em>
For example, during "Full Moon," <em>the moon's entire face is lit up by the sun</em>. Thus, we see the entire moon's lit portion.
Thus, this explains the answer.
Answer:
A
Explanation:
hail will fall push it back up making it bigger comes back down