One substance can be separated from another through physical means
Correct Answer: Option C
Reason:
<span>The </span>Pauli Exclusion Principle<span> states as '<em>in an atom or molecule, no two electrons can have the same four electronic quantum numbers. Further, an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.</em>'
</span>
Thus, it can be seen that in option C, electrons in last 2 subshell have electrons with same spin, which is a violation of Pauli Exclusion Principle .
Answer:
- Option A): <em>Due to the constraints upton the angular momentum quantum number, the subshell </em><u><em>2d</em></u><em> does not exist.</em>
Explanation:
The <em>angular momentum quantum number</em>, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or <em>kind of subshell</em>.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
- <u>the subshell 2d (n = 2, l = 2) is not feasible</u>.
- 2s (option B) is possible: n = 2, l = 0
- 2p (option C) is possible: n = 2, l = 1
4Fe + 3O2 -> 2 (Fe2O3)
Both sides have 4Fe and 6O.