Explanation:
Since, entropy is the measure of degree of randomness. So, more randomly the molecules of a substance are moving more will be its entropy.
- For example, when a solid melts then it means heat is absorbed by it due to which its molecules have gained energy. As a result, they collide with each other and hence, entropy will increase.
- Evaporation of a liquid will also cause the liquid to change its state from liquid to gas. This means molecules will go far away from each other leading to an increase in the entropy.
- Sublimation is a process of conversion of a solid into gaseous phase without going through liquid phase. So, in this case also entropy will increase due to gain in energy by the molecules of a solid.
- In freezing, molecules of a substance come closer to each other and acquire less energy. Hence, entropy decreases.
- Mixing is a process of combining two or more substances physically with each other. This leads to increase in entropy of a substance.
- In separation molecules are separated from each other leading to a decrease in energy. Hence, entropy will also decrease.
- Diffusion is a process in which molecules are able to rapidly move from one place to another. Hence, entropy increases when diffusion takes place.
Thus, we can conclude that melting of a solid, evaporation of a liquid, sublimation, mixing and diffusion involve an increase in the entropy of the system under consideration.
Answer:
because
Explanation:
because we need eye to see if you don't have eyes how you regnise some one
if you have ears how can you know who's voice is who's
if don't have fingers how can you know what your are holding this is why they are called physical sensors
Answer:
a. k = (1/k₁ + 1/k₂)⁻¹ b. k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
Explanation:
Since only one force F acts, the force on spring with spring constant k₁ is F = k₁x₁ where x₁ is its extension
the force on spring with spring constant k₂ is F = k₂x₂ where x₁ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂
x = F/k = F/k₁ + F/k₂
1/k = 1/k₁ + 1/k₂
k = (1/k₁ + 1/k₂)⁻¹
B
The force on spring with spring constant k₃ is F = k₃x₃ where x₃ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂ + x₃
x = F/k = F/k₁ + F/k₂ + F/k₃
1/k = 1/k₁ + 1/k₂ + 1/k₃
k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
6.3 That Would be the I answer I think but Check on Google For the formula
Answer:
C) Both the charge on the plates of the capacitor and its capacitance would change.
Explanation:
The capacitance of parallel plate capacitor without dielectric material is given as;

A parallel plate capacitor with a dielectric between its plates has a capacitance given by;

where;
C is the capacitance
K is the dielectric constant
ε₀ is permittivity of free space
A is the area of the plates
d is the distance of separation of the two plates
- first point to note, is that the capacitance increases when dielectric material is inserted by a factor 'k'
Again, Q = CV (without dielectric material)
(with dielectric material)
- second point to note, is that charge stored in the plates increases due to presence of dielectric material.
Finally, we can conclude that both the charge on the plates of the capacitor and its capacitance would change.