Answer:
B) Pressure on the scale, not registered as weight.
Explanation:
This is because energy (derived from weight) becomes compiled on the tips of your toes, and therefore does not increase your weight, but simply the pressure at a smaller point
Answer:
B) the average distance from the Earth to the Sun
Explanation:
Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892
Answer:
There will be two forces acting on her: Gravitational force and Air resisitence