<span>Mass of the solution = 0.17m
Kb for C6H5NH2 = 3.8 x 10^-10
We know Ka for C6H5NH2 = 1.78x10^-11
We have Kw = Ka x Kb => Ka = Kw / Kb
=> (C2H5NH2)(H3O^+)/(C2H5NH3^+) => 1.78x10^-11 = K^2 / 0.17
K^2 = 3 x 10^-12 => K = 1.73 x 10^-6.
pH = -log(Kw(H3O^+)) = -log(1.73 x 10^-6) = 5.76</span>
We need an equation that will relate the concentrated mixture and the diluted one. To solve this we use the equation,
M1 V1 = M2 V2
where M1 is the concentration
of the stock solution, V1 is the volume of the stock solution, M2 is the
concentration of the new solution and V2 is its volume.
M1V1 = M2V2
30 % x 6 oz = 20 % x V2
V2 = 9 oz
The volume of the diluted mixture would be 9 oz. Therefore, you will need to add 9 oz - 6 oz = 3 oz of fruit juice to dilute the 30 percent alcohol to 20 percent alcohol.
The only stable caesium isotope is 133Cs, with 78 neutrons.
Hope this answers your Q
I believe the answer in an inclined plane, because the ridge running along the sides run up the core. (Also, the other two answers are incorrect, so process of elimination)
The correct answer is 96.80 grams
Explanation:
The density of a substance shows the total mass the substance contains in 1 mL or 1 cm3 as density is calculated by using the formula D= M (mass) / V (volume). This implies, Iron contains 7.87 grams per milliliter. Moreover, this value and formula can be used to calculate the mass or volume of any other sample. The process to calculate the mass of an iron sample with a volume of 12.3 mL is shown below.
D = M ÷ V
7.87 mL = x ÷ 12.3 mL - x represents the missing value. Now find the value of x by solving the equation
x = 7.87 · 12.3
x = 96.80
This means a sample of 12.3 mL contains a mass of 96.80 grams. Also, you can know this value is correct because if you divide the mass by the value the density is the same (96.80 grams ÷ 12.3 mL = 7.87 g/mL)