Answer: required tensile stress is 0.889 MPa
Explanation:
Given that;
tensile load is oriented along the [1 1 1] direction
shear stress is 0.242 MPa along [1 0 1] in the (1 1 -1) plane
first we determine
λ which is Angle between [1 1 1] and [1 0 1]
so
cosλ = [ 1(1) + 1(0) + 1(1) ] / [ √(1² + 1² + 1²) √(1² + 0² + 1²)]
= 2 / √3√2 = 2/√6
Next, we determine ∅ which is angle between [1 1 1] and [1 1 -1]
so,
cos∅ = [ 1(1) + 1(1) + 1(-1) ] / [ √(1² + 1² + 1²) √(1² + 1² + (-1)²)]
cos∅ = [ 2-1] / [√3√3 ]
cos∅ = 1/3
Now, we know that;
σ = T_stress/cosλcosθ
so we substitute
σ = 0.242 / ( 2/√6 × 1/3 )
σ = 0.242 / 0.2721
σ = 0.889 MPa
Therefore, required tensile stress is 0.889 MPa
Answer:
Explanation:
f = 50.0 Hz, L = 0.650 H, π = 3.14
C = 4.80 μF, R = 301 Ω resistor. V = 120volts
XL = wL = 2πfL
= 2×3.14×50* 0.650
= 204.1 Ohm
Xc= 1/wC
Xc = 1/2πfC
Xc = 1/2×3.14×50×4.80μF
= 1/0.0015072
= 663.48Ohms
1. Total impedance, Z = sqrt (R^2 + (Xc-XL)^2)= √ 301^2+ (663.48Ohms - 204.1 Ohm)^2
√ 90601 + (459.38)^2
√ 90601+211029.98
√ 301630.9844
= 549.209
Z = 549.21Ohms
2. I=V/Z = 120/ 549.21Ohms =0.218Ampere
3. P=V×I = 120* 0.218 = 26.16Watt
Note that
I rms = Vrms/Xc
= 120/663.48Ohms
= 0.18086A
4. I(max) = I(rms) × √2
= 0.18086A × 1.4142
= 0.2557
= 0.256A
5. V=I(max) * XL
= 0.256A ×204.1
=52.2496
= 52.250volts
6. V=I(max) × Xc
= 0.256A × 663.48Ohms
= 169.85volts
7. Xc=XL
1/2πfC = 2πfL
1/2πfC = 2πf× 0.650
1/2×3.14×f×4.80μF = 2×3.14×f×0.650
1/6.28×f×4.8×10^-6 = 4.082f
1/0.000030144× f = 4.082×f
1 = 0.000030144×f×4.082×f
1 = 0.000123f^2
f^2 = 1/0.000123048
f^2 = 8126.922
f =√8126.922
f = 90.14 Hz
Answer:
- def median(l):
- if(len(l) == 0):
- return 0
- else:
- l.sort()
- if(len(l)%2 == 0):
- index = int(len(l)/2)
- mid = (l[index-1] + l[index]) / 2
- else:
- mid = l[len(l)//2]
- return mid
-
- def mode(l):
- if(len(l)==0):
- return 0
-
- mode = max(set(l), key=l.count)
- return mode
-
- def mean(l):
- if(len(l)==0):
- return 0
- sum = 0
- for x in l:
- sum += x
- mean = sum / len(l)
- return mean
-
- lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
- print(mean(lst))
- print(median(lst))
- print(mode(lst))
Explanation:
Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).
In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.
In mean function, after checking the length of list, we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).
In the main program, we test the three functions using a sample list and we shall get
20.5
12.5
12
The question is asking whether that statement is true or false. Options are;
A) True
B) False
This is about usage of Swing arm restraints.
<em><u>B) False</u></em>
There are different safety features that people employ when a vehicle is lifted. However, for this question, we will only talk about swing arm restraints.
- Swing arm restraints are lifting restraint devices that are used to prevent a cars arms from shifting or going out of position after that car has been lifted and mounted.
- This swing arm restraint does not prevent a vehicle from falling off a lift as it just helps to ensure that the swing arms that are unloaded basically maintain their position.
Read more at; brainly.com/question/17972874