The attractive forces between the neighboring particles of a substance are known as intermolecular forces. The state of a substance relies upon the strength of the intermolecular forces among the molecules in a substance.
There are three kinds of intermolecular forces, that is, the dipole-dipole forces, ion-dipole forces, and the London dispersion forces. On the basis of the kinds of intermolecular forces, it is concluded that the intermolecular forces primarily relies upon the nature of the molecule's bonding.
Thus, on the basis of the nature of bonding between the associating atoms in a molecule one can know about the nature of intermolecular forces. On the basis of Newton's law of gravitation, all the physical bodies get fascinated towards each other, and it is known that each physical body comprises of matter. Thus, the matter is fundamentally attracted by other matter.
ANSWER: True
EXPLANATION: An inference is a logical conclusion based on observations.
Hope it helps u!
Answer:
0.21 g
Explanation:
The equation of the reaction is;
NaCl(aq) + AgNO3(aq) -----> NaNO3(aq) + AgCl(s)
Number of moles of NaCl= 0.0860 g /58.5 g/mol = 0.00147 moles
Number of moles of AgNO3 = 30/1000 L × 0.050 M = 0.0015 moles
Since the reaction is 1:1, NaCl is the limiting reactant.
1 mole of NaCl yields 1 mole of AgCl
0.00147 moles of NaCl yields 0.00147 moles of AgCl
Mass of precipitate formed = 0.00147 moles of AgCl × 143.32 g/mol
= 0.21 g
we have a total of three times the original number (6.923 * 10**-7) moles of all ions, or 2.077 * 10**-6 moles of ions
<h3>What is aragonite-strontianite solid solution dissolution in nonstoichiometric Sr (HCO3)2 solutions?</h3>
Synthetic strontianite-aragonite solid-solution minerals were dissolved in non-stoichiometric CO2-saturated Sr(HCO3)2 and Ca(HCO3)2 solutions at 25°C. The reactions in Sr(HCO3)2 solutions frequently become incongruent, precipitating a Sr-rich phase before attaining stoichiometric saturation. Mechanical mixes of solids approach stoichiometric saturation in terms of the least stable solid in the combination.
This surficial phase has a thickness of 0-10 atomic layers in Sr(HCO3)2 solutions and a thickness of 0-4 layers in Ca(HCO3)2 solutions and dissolves and/or recrystallizes within 6 minutes of reaction.
learn more about Sr (HCO3)2 refer
brainly.com/question/24667072
#SPJ4
Answer:
<h2>0.52 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
volume = final volume of water - initial volume of water
volume = 35 - 8 = 27 mL
We have

We have the final answer as
<h3>0.52 g/mL</h3>
Hope this helps you