Moles of phosphoric acid would be needed : 0.833
<h3>Further explanation</h3>
Given
15 grams of water
Required
moles of phosphoric acid
Solution
Reaction(decomposition) :
H3PO4 -> H2O + HPO3
mol water (H2O :
= mass : MW
= 15 g : 18 g/mol
= 0.833
From the equation, mol ratio H3PO4 = mol H2O = 1 : 1, so mol H3PO4 = 0.833
Answer:
None of these are correct, because there is no way to balance this equation, but I hope these steps help you figure out your answer.
Explanation:
Count out the single amounts of elements you have on both sides of the equation. To be balanced, you need to have the exact same for each element.
Before balanced Left side.
Cl-2
O-8
H-2
Before balanced right side.
H-1
Cl-1
O-3
That means we need to increase Hydrogen, Chlorine and Oxygen on the right for sure and see how that affects the equation. You can keep adding the Coefficients until the # of elements begin to match on each side.
(I tried to balance this equation, it doesn't work, there is too much on the reactants side for what the product is.)
Answer:
<em>Alkali metals are among the most reactive metals. This is due in <u>part to their larger atomic radii and low ionization energies.</u> They tend to donate their electrons in reactions and have an oxidation state of +1. ... All these characteristics can be attributed to these elements' large atomic radii and weak metallic bonding.</em>
Explanation:
<em>I </em><em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>#</em><em>C</em><em>A</em><em>R</em><em>R</em><em>Y</em><em>O</em><em>N</em><em>L</em><em>E</em><em>R</em><em>A</em><em>N</em><em>I</em><em>N</em><em>G</em>
Answer:
The molar mass of the liquid 62.89 g/mol
Explanation:
Step 1: Data given
Mass of the sample = 0.1 grams
Temperature = 70°C
Volume = 750 mL
Pressure = 0.05951 atm
Step 2: Calculate the number of moles
p*V = n*R*T
n = (p*V)/(R*T)
⇒ with n = the number of moles gas = TO BE DETERMINED
⇒ with p = The pressure = 0.05951 atm
⇒ with V = The volume of the flask = 750 mL = 0.750 L
⇒ with R = The gasconstant = 0.08206 L*atm/K*mol
⇒with T = the temperature = 70 °C = 343 Kelvin
n = (0.05951 *0.750)/(0.08206*343)
n = 0.00159 moles
Step 3: Calculate molar mass
Molar mass = mass / moles
Molar mass =0.1 gram / 0.00159 moles
Molar mass = 62.89 g/mol
The molar mass of the liquid 62.89 g/mol