Increase in Oxygen shift the equilibrium towards reactant side.
<u>Explanation:</u>
6CO₂ + 6H₂O ⇄ C₆H₁₂O₆ + 6O₂
This is the reaction occurs in the photosynthesis of plants by means of sunlight. In this case, if the concentration of Oxygen increases or adding more oxygen to the product side will shift the equilibrium towards the reactant side according to the Le Chatlier's principle, which adjusts the equilibrium by itself for any changes that is increase or decrease in pressure, temperature or concentration of reactants or products.
Answer:
Part A:
"360 grams of NaCl can be dissolved in 1 L water. So, 2000 grams sugar can be dissolved in 1 L water then we can say that the solubility of salt is lesser in water as to sugar and both heightened by increasing the temperature. If we make a batch of 800 L we can add sugar, 1600 kg at 25 0c. We can add salt is 288 kg at 25 0c and the ingredient tomato is having low solubility."
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/8061-describe-the-sequence-of-adding-ingredients-to-make-the-recipe.html
Part B:
'Manufacturers can generate new value minimize cost and increase operational stability by focusing on 4 broad areas; Management, Supply Circle, Product Design, and Value Recovery.'
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/2807911-what-changes-could-be-made-to-optimize-the-manufacturing-process.html
This question requires the knowledge of density.
The density of ethyl alcohol = 789 kg m⁻³
The density of water = 1000 kg m⁻³
Density = Mass / Volume
By applying ethyl alcohol,
789 kg m⁻³ = Mass / 0.9 m³
Mass = 710.1 kg
hence the mass of 0.9 m³ ethyl alcohol is 710.1 kg.
Then by applying water,
1000 kg m⁻³ = 710.1 kg / Volume
Volume = 0.7101 m³
= 0.7 m³
hence the equal water volume is 0.7 m³
Answer:
Here's what I get.
Explanation:
At the end of the reaction you will have a solution of the alcohol in THF.
The microdistillation procedure will vary, depending on the specific apparatus you are using, but here is a typical procedure.
- Transfer the solution to a conical vial.
- Add a boiling stone.
- Attach a Hickman head (shown below) and condenser.
- Place the assembly in in the appropriate hole of an aluminium block on top of a hotplate stirrer.
- Begin stirring and heating at a low level so the THF (bp 63 °C) can distill slowly.
- Use a Pasteur pipet to withdraw the THF as needed.
- When all the THF has been removed, raise the temperature of the Al block and distill the alcohol (bp 143 °C).
Answer:
1) 37100000
2) 330000000
Explanation:
1) 3.7 x 10^7 = 37100000
2) 3.30 x 10^8 = 330000000
(Hope this helps can I pls have brainlist (crown)☺️)