Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
g: Gravitational Acceleration
θ: Angle with the vertical
N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
m*g*cos(θ) - 0 = m*vf^2 / R
g*cos(θ) = vf^2 / R
vf^2 = R*g*cos(θ)
vf^2 = 1.45*32.2*cos(34)
vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
ΔK.E = ΔP.E
0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
vi^2 = vf^2 - 2*g*R*( 1 - cos(θ))
vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
vi^2 = 22.744
vi = 4.77 ft/s
Respuesta:
0,0560 cal / gºC.
Explicación:
Cantidad de calor; (Q)
Q = mcΔt; Δt = t2 - t1
m = masa, c = capacidad calorífica específica; Δt = cambio de temperatura
c de agua = 1 cal / gºC
c de aluminio = 0,22 cal / gºC
QTotal = Q de agua + Q de aluminio
Q de agua = 450 * 1 * (26 - 23) = 1350 cal
Q de aluminio = 60 * 0.22 * (26 - 23) = 39.6 cal
QTotal = 1350 + 39,6 = 1389,6 cal
Calor perdido = calor ganado
QTotal = calor perdido
- 1389,6 = 335,2 * c * (26 - 100)
-1389,6 = −24804,8 * c
c = 1389,6 / 24804,8
c = 0,056021 cal / gºC.
Capacidad calorífica específica de la plata = 0,0560 cal / gºC.
<span>Like charges repel and opposite charges attract.
The further away two charged objects are the weaker the electrical force between them.
The closer two charged objects are the stronger the electrical force between them.
Hope this helps :)</span>
Answer:
refractive index for water,glass,diamond are 0.752m, 0.667m, 0.413m respectively
Explanation:
refractive index (n) = 
velocity =
The time for travel is kept constant for all mediums.
refractive index (n) = 
distance in medium = 

For water, n= 1.33


For glass, n=1.5


For diamond, n= 2.42


42.9°
Explanation:
Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:


Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at
Solving for the angle, we get

or

![\;\;\;= \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%3D%20%20%5Csin%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7B34%5C%3A%5Ctext%7BN%7D%7D%7B%285.1%5C%3A%5Ctext%7Bkg%7D%29%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%5Cright%5D)
