Answer:
d = 0 [m]
Explanation:
Displacement is understood as the length and direction that a body travels to move from an initial point to an endpoint.
This displacement is represented with a vector or straight line that indicates the distance of the displacement and its length.
This displacement in an easier way to understand. It is the distance between the start point and the endpoint of the journey. Since the second point is equal to the first point, since Mary returns to the same place, there is no difference between the displacement.
Therefore the displacement is zero.
Answer:
Approximately (assuming that the acceleration due to gravity is.)
Explanation:
Assuming that the weight on this 72-kg skydiver would be (points downwards.)
Air resistance is supposed to act in the opposite direction of the motion. Since this skydiver is moving downwards, the air resistance on the skydiver would point upwards.
Therefore, the net force on this skydiver should be the difference between the weight and the air resistance on the skydiver:
.
Apply Newton's Second Law of motion to find the acceleration of this skydiver:
.
Answer:
longitudinal waves have those properties
Answer:
B
Explanation:
OOf we are doing this stuff atm
So if its faster at the front and slow at the back you can tell that its not slowing down because less of a force is there however at the front there is more of a force. Friction is low which means that its not makimg much contact so no sudden change of forces thats also why its B
Answer: W = J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by
q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p = C
To determine work in joules, potential has to be in Volts, so:
Then, work is
To move a potassium ion from the exterior to the interior of the cell, it is required J of energy.