Answer:
300000 J / 400 J/s = 750 s = 12.5 minutes
Explanation:
The velocity of the ferry relative to the current is 4.5 m/s.
<h3>Relative velocity</h3>
- Relative velocity is the velocity of a body as observed from the reference point of another body either stationary or in motion.
Since the river is flowing parallel to the shore and the ferry is moving perpendicular to the shore, their velocities are at right angles to each other.
The two velocities form a right angled-triangle of sides 2, 4 and a hypotenuse which gives the relative velocity of the ferry to the current.
Using Pythagoras rule:
- Let c be the hypotenuse
- a = velocity of the ferry, and
- b = the velocity of the current, and
c² = 4² + 2²
c² = 16 + 4
c = 20
c = √20
c = 4.47 m/s
c ≈ 4.5 m/s
Therefore, the velocity of the ferry relative to the current is 4.5 m/s.
Learn more about relative velocity and Pythagoras rule at: brainly.com/question/25617868
Answer: 2.1 × 10^7 m/s
Explanation:
Please see the attachments below
Answer:
a) τ = 0.672 N m
, b) θ = 150 rad
, c) W = 100.8 J
Explanation:
a) for this part let's start by finding angular acceleration, when the angular velocity stops it is zero (w = 0)
w = w₀ + α t
α = -w₀ / t
α = 120 / 2.5
α = 48 rad / s²
The moment of inertia of a cylinder is
I = ½ M R²
Let's calculate the torque
τ = I α
τ = ½ M R² α
τ = ½ 2.8 0.1² 48
τ = 0.672 N m
b) we look for the angle by kinematics
θ = w₀ t + ½ α t2
θ = ½ α t²
θ = ½ 48 2.5²
θ = 150 rad
c) work in angular movement
W = τ θ
W = 0.672 150
W = 100.8 J
Answer:
The net charge on the shell is 30x10^-9C
Explanation:
Pls see attached file