1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blababa [14]
3 years ago
7

The image above shows the nucleus of a nitrogen atom. How can the atomic number of nitrogen be determined?

Physics
1 answer:
nikklg [1K]3 years ago
8 0
The atomic number of an atom is the
number of protons in its nucleus.
You might be interested in
The force required to stretch a Hooke’s-law
Setler [38]

I think this is correct, but I am not entirely certain.

Find the force constant of the spring:

F = - KX

(0 - 62.4) = -K(0.172m)

-362.791 = -K

362.791 N/m = K


Find the work done in stretching the spring:

W = (1/2)KX

W = (1/2)(362.791)(0.172m)

W = 31.2 J


5 0
3 years ago
Sound enters the ear, travels through the auditory canal, and reaches the eardrum. The auditory canal is approximately a tube op
Nesterboy [21]

Answer: An organ pipe is open at both ends. It is producing sound at its third harmonic, the frequency of which is 262 Hz. The speed of sound is 343 m/s. What is the length of the pipe?

Explanation: thanks for asking

8 0
3 years ago
A guitar player tunes the fundamental frequency of a guitar string to 560 Hz. (a) What will be the fundamental frequency if she
lawyer [7]

Answer:

(a) if she increases the tension in the string is increased by 15%, the fundamental frequency will be increased to 740.6 Hz

(b) If she decrease the length of the the string by one-third the fundamental frequency will be increased to 840 Hz

Explanation:

(a) The fundamental, f₁, frequency is given as follows;

f_1 = \dfrac{\sqrt{\dfrac{T}{\mu}}  }{2 \cdot L}

Where;

T = The tension in the string

μ = The linear density of the string

L = The length of the string

f₁ = The fundamental frequency = 560 Hz

If the tension in the string is increased by 15%, we will have;

f_{(1  \, new)} = \dfrac{\sqrt{\dfrac{T\times 1.15}{\mu}}  }{2 \cdot L} = 1.3225 \times \dfrac{\sqrt{\dfrac{T}{\mu}}  }{2 \cdot L}  = 1.3225 \times f_1

f_{(1  \, new)} = 1.3225 \times f_1 = (1 + 0.3225) \times f_1

f_{(1  \, new)} = 1.3225 \times f_1 =\dfrac{132.25}{100} \times 560 \ Hz  = 740.6 \  Hz

Therefore, if the tension in the string is increased by 15%, the fundamental frequency will be increased by a fraction of 0.3225 or 32.25% to 740.6 Hz

(b) When the string length is decreased by one-third, we have;

The new length of the string, L_{new} = 2/3·L

The value of the fundamental frequency will then be given as follows;

f_{(1  \, new)} =  \dfrac{\sqrt{\dfrac{T}{\mu}}  }{2 \times \dfrac{2 \times L}{3} }  =\dfrac{3}{2} \times \dfrac{\sqrt{\dfrac{T}{\mu}}  }{2 \cdot L} = \dfrac{3}{2} \times 560 \ Hz =  840 \ Hz

When the string length is reduced by one-third, the fundamental frequency increases to one-half or 50% to 840 Hz.

6 0
3 years ago
Explain why a moving object cannot come to a stop instantaneously (in zero seconds). Hint: Think about the acceleration that wou
gizmo_the_mogwai [7]
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
7 0
3 years ago
1<br> 2<br> 3<br> What would happen if Bulb 1 goes out?
aleksandrvk [35]

Answer:

it will explode

Explanation:

because it will explode

5 0
3 years ago
Other questions:
  • Which device provides electrical energy to run an electric circuit?
    13·1 answer
  • A fountain shoots a jetof water straight up. The nozzle is 1 cm in diameter and the speed of the water exiting the nozzle is 30
    15·1 answer
  • During what stage of engine operation does the piston move upward in the cylinder and force the burned gases out of the cylinder
    15·1 answer
  • Vicky wanted to investigate water evaporation. She placed 50 mL of distilled water in three identical glass jars. She left one j
    10·2 answers
  • PLEASE HELP PHYSICS!!!!! WILL MARK BRAINLIEST IF CORRECT!!!!
    11·2 answers
  • When the early universe cooled enough for atoms to form, _____ began.
    10·2 answers
  • (12 points) Analysis from the point where the block is released to the point where it reaches the maximum height i) Calculate th
    7·1 answer
  • a car accelerate at 9 m/s squared. Assuming the car starts from rest how far will it travel in 10 seconds
    12·1 answer
  • Which forces are acting on the student and the skateboard in the instant in which they are pushing off the wall? (Select all tha
    15·2 answers
  • The value of acceleration due to gravity is less at the top of Mount Everest then that in the terai reason, why?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!