Explanation:
firstly find for the molar mass of kcl and molar mass of k
and then
molar mass of k = x
molar mass of kcl= 40
cross mutiply and then simplify you will get your answer
Isotopes are two atoms with the same number of protons, but a different number of neutrons. Because they have the same number of proton they are atoms of the same element, but with different masses.
so, the answer is c.
i hope this will help you
Answer:
to be honest ask your teacher
Answer:
0.0250 g
Explanation:
Step 1: Determine the molar mass of Vitamin C.
The molar mass is the mass in grams corresponding to 1 mole. In order to calculate the molar mass of vitamin C (C₆H₈O₆) we need to add the molar masses of the elements that compose it.
M(C₆H₈O₆) = 6 × M(C) + 8 × M(H) + 6 × M(O)
M(C₆H₈O₆) = 6 × 12.01 g/mol + 8 × 1.01 g/mol + 6 × 16.00 g/mol
M(C₆H₈O₆) = 176.14 g/mol
Step 2: Calculate the mass corresponding to 0.000142 mol of vitamin C.

Answer:
Enthalpy of formation = -947.68KJ/mol
Explanation:
Enthalpy of formation is the heat change when one mole of a substance is formed from its element in its standard states and in standard conditions of temperature and pressure. it may be positive or negative, if positive, it is an endothermic reaction where the heat content of the product is greater than that of the reactants, and if negative, it is exothermic reaction - where the heat content of the reactants is greater than the products. the enthalpy of formation is measured in KiloJoule/Moles (KJ/Mole).
From the value of the enthalpy of formation of NaHCO3, it shows that the reaction is exothermic, that is the formation of NaHCO3 from its constituents elements. As such, the heat content of the reactants is greater than the products.
The step by step explanation is shown in the attachment.