Answer:
Explanation:
q = 2e = 3.2 x 10^-19 C
mass, m = 6.68 x 10^-27 kg
Kinetic energy, K = 22 MeV
Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A
(a) time, t = 2.8 s
Let N be the alpha particles strike the surface.
N x 2e = q
N x 3.2 x 10^-19 = i t
N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8
N = 2.36 x 10^12
(b) Length, L = 16 cm = 0.16 m
Let N be the alpha particles
K = 0.5 x mv²
22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²
v² = 1.054 x 10^15
v = 3.25 x 10^7 m/s
So, N x 2e = i x t
N x 2e = i x L / v
N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)
N = 4153.85
(c) Us ethe conservation of energy
Kinetic energy = Potential energy
K = q x V
22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V
V = 1.17 x 10^7 V
Answer:
(i) The angular speed of the small metal object is 25.133 rad/s
(ii) The linear speed of the small metal object is 7.54 m/s.
Explanation:
Given;
radius of the circular path, r = 30 cm = 0.3 m
number of revolutions, n = 20
time of motion, t = 5 s
(i) The angular speed of the small metal object is calculated as;

(ii) The linear speed of the small metal object is calculated as;

Answer:
You pull on the oars. By the third law, the oars push back on your hands, but that’s irrelevant to the motion of the boat. The other end of each oar (the blade) pushes against the water. By the third law, the water pushes back on the oars, pushing the boat forward.
Answer:
3.1216 m/s.
Explanation:
Given:
M1 = 0.153 kg
v1 = 0.7 m/s
M2 = 0.308 kg
v2 = -2.16 m/s
M1v1 + M2v2 = M1V1 + M2V2
0.153 × 0.7 + 0.308 × -2.16 = 0.153 × V1 + 0.308 × V2
= 0.1071 - 0.66528 = 0.153 × V1 + 0.308 × V2
0.153V1 + 0.308V2 = -0.55818. i
For the velocities,
v1 - v2 = -(V1 - V2)
0.7 - (-2.16) = -(V1 - V2)
-(V1 - V2) = 2.86
V2 - V1 = 2.86. ii
Solving equation i and ii simultaneously,
V1 = 3.1216 m/s
V2 = 0.2616 m/s
Answer:
C) Frosted glass sheet
Explanation:
C) Frosted glass sheet
because it is Icy and slippery which make the ball move from its least distance
I hope you understand what it means