Answer:
B. A precipitate will form since Q > Ksp for calcium oxalate
Explanation:
Ksp of CaC₂O₄ is:
CaC₂O₄(s) ⇄ Ca²⁺ + C₂O₄²⁻
Where Ksp is defined as the product of concentrations of Ca²⁺ and C₂O₄²⁻ in equilibrium:
Ksp = [Ca²⁺][C₂O₄²⁻] = 2.27x10⁻⁹
In the solution, the concentration of calcium ion is 3.5x10⁻⁴M and concentration of oxalate ion is 2.33x10⁻⁴M.
Replacing in Ksp formula:
[3.5x10⁻⁴M][2.33x10⁻⁴M] = 8.155x10⁻⁸. This value is reaction quotient, Q.
If Q is higher than Ksp, the ions will produce the precipitate CaC₂O₄ until [Ca²⁺][C₂O₄²⁻] = Ksp.
Thus, right answer is:
<em>B. A precipitate will form since Q > Ksp for calcium oxalate</em>
<em></em>
Answer:
1837.65 mmHg is the pressure in millimeters of mercury.
Explanation:
The expression for the conversion of Pressure (kPa) to pressure (mmHg) is shown below as:-
Pressure (kPa) = 7.501 x Pressure (mmHg)
The pressure value given = 245 kPa
It can be expressed in millimeters of mercury as:-
Pressure = 7.501 x 245 mmHg = 1837.65 mmHg
<u>1837.65 mmHg is the pressure in millimeters of mercury.</u>
Answer:- 71.7 calories
Solution:- it is a unit conversion problem where we need to convert joules into calories.
The unit conversion for these energy units is:
1 calorie = 4.184 joule
The given energy is 300 joules and has to be converted to calories. We will show the set up using dimensional analysis.

= 71.7 calories
So, the energy in calories is 71.7.
Answer is: at lower temperatures the reaction rate would decrease.
The lower is the temperature, the slower the reaction becomes.
The Haber process is procedure for the production of ammonia, in this process atmospheric nitrogen (N₂) is converted to ammonia (NH₃):
N₂ + 3H₂ ⇄ 2NH₃ ΔrH = -92 kJ/mol.
Because this is exothermic reaction (enthalpy is less than zero), at lower temperatures, the equilibrium is in favor of ammonia, but the reaction doesn't proceed at a detectable rate.
Answer:
See explanation
Explanation:
Echo is the reflection of sound waves. Recall that ultrasound are also sound waves of high frequency.
When ultra sound meets an obstacle such as a bone, it is reflected backwards and gives rise to an echo back in the transducer.
Since ultrasound is high frequency sound wave wave; It does not passes through bone due to the high density of the bone, the data required may now be collected.