Answer:
Decreases
Explanation:
Fatty acid which have the double bond or triple bond are called unsaturated fatty acids. Because of the double or triple bond, unsaturated fatty acids are loosely packed and form some distance among molecules which lowers the melting point of unsaturated fatty acids.
So, if the unsaturation of fatty acid will increase, it leads to more branched and loosely packed molecules and decreases the melting temperature accordingly.
Answer: There are 0.00269 moles of acetic acid in buffer.
Explanation:
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of acetic acid solution = 0.0880 M
Volume of solution = 30.6 mL
Putting values in equation 1, we get:
Thus there are 0.00269 moles of acetic acid in buffer.
Answer:
to the left
Explanation:
<u>If the concentration of products is increased for a reaction that is in equilibrium, the equilibrium would shift to the left side of the reaction (the reactant's side). </u>
For a reaction that is in equilibrium, the reaction is balanced between the reactants and the products. According to Le Cha telier's principle, if one of the constraints capable of influencing the rate of reactions is applied to such a reaction that is in equilibrium, the equilibrium would shift so as to neutralize the effects created by the constraint.
<em>Hence, in this case, if the concentration of the products of a reaction in equilibrium is increased, the equilibrium would shift in such a way that more reactants are formed so as to annul the effects created by the increase in the concentration of the products. Since reactants are always on the left side of chemical equations, it thus means that the equilibrium would shift to the left.</em>
Answer:
See explanation and image attached
Explanation:
The Gilman reagent is a lithium and copper (diorganocopper) reagent with a general formula R2CuLi. R is an alkyl or aryl group.
They are useful in the synthesis of alkanes because they react with organic halides to replace the halide group with an R group.
In this particular instance, we intend to synthesize propylcyclohexane. The structure of the lithium diorganocopper (Gilman) reagent required is shown in the image attached to this answer.
Answer:
15.0 µm
Step-by-step explanation:
Density = mass/volume
D = m/V Multiply each side by V
DV = m Divide each side by D
V = m/D
Data:
m = 1.091 g
D = 7.28 g/cm³
l = 10.0 cm
w = 10.0 cm
Calculation:
<em>(a) Volume of foil
</em>
V = 1.091 g × (1 cm³/7.28 g)
= 0.1499 cm³
(b) <em>Thickness of foil
</em>
The foil is a rectangular solid.
V = lwh Divide each side by lw
h = V/(lw)
= 0.1499/(10 × 10)
= 1.50 × 10⁻³ cm Convert to millimetres
= 0.015 mm Convert to micrometres
= 15.0 µm
The foil is 15.0 µm thick.