Answer:
63.05 cm²
Explanation:
We use Pascals law to find the answer.
The law says that in an incomprehensible , non-viscous fluid the pressure applied will transmit through out the fluid without a change.
So, Pressure on larger piston = pressure on smaller piston.

A ≅ 63.05 cm²
Answer:
the car is going to same sped !
Explanation:
I just now luv
Power = (work or energy) / (time)
100 W = (energy) / (20 sec)
Energy = 2,000 watt-sec
<em>Energy = 2,000 J</em>
Answer:
a. 2v₀/a b. 2v₀/a
Explanation:
a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.
Since the dragster starts from rest with an acceleration, a, using
s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster
s' = 0t + 1/2at²
s' = 1/2at²
Since the distance moved by me and the dragster must be the same,
s = s'
v₀t. = 1/2at²
v₀t. - 1/2at² = 0
t(v₀ - 1/2at) = 0
t= 0 or v₀ - 1/2at = 0
t= 0 or v₀ = 1/2at
t= 0 or t = 2v₀/a
So the maximum time tmax = 2v₀/a
b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s = v₀(2v₀/a)
= 2v₀/a
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San