Answer: The hierarchical formation model suggests that galaxies may have been formed by subsequent mergers of smaller galaxies and that today each galaxy houses at least a supermassive black hole.
Explanation: During a fusion of galaxies, the stars that composes it suffer the tidal force, intensifying your action as the galaxies approaching. When two galaxies merges themselves, the astronomers believes that they loss a huge part of their mass, forming the supremassive black hole, that stays in the middle of the galaxie.
The supermassive black holes are originated from the evolution of high mass stars. They were formed by huge clouds of gas or clusters of millions of stars that collapsed on their own gravity when the universe was still much younger and denser.
The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
Answer:

Explanation:
The total force on the particle is given by

Then, by replacing we have:
![q\vec{v}\ X \vec{B}=q[7\hat{k}-9\hat{j}-\hat{k}]\\\\q\vec{E}=q[5\hat{i}-\hat{j}-2\hat{k}]\\\\\vec{F}=(9.61*10^{-19}C)[(7+9)\hat{i}+(-9-1)\hat{j}+(-1-2)\hat{k}]\\\\\vec{F}=(1.537*10^{-17}\hat{i}-9.61*10^{-19}\hat{j}-2.883*10^{-18}\hat{k})N](https://tex.z-dn.net/?f=q%5Cvec%7Bv%7D%5C%20X%20%5Cvec%7BB%7D%3Dq%5B7%5Chat%7Bk%7D-9%5Chat%7Bj%7D-%5Chat%7Bk%7D%5D%5C%5C%5C%5Cq%5Cvec%7BE%7D%3Dq%5B5%5Chat%7Bi%7D-%5Chat%7Bj%7D-2%5Chat%7Bk%7D%5D%5C%5C%5C%5C%5Cvec%7BF%7D%3D%289.61%2A10%5E%7B-19%7DC%29%5B%287%2B9%29%5Chat%7Bi%7D%2B%28-9-1%29%5Chat%7Bj%7D%2B%28-1-2%29%5Chat%7Bk%7D%5D%5C%5C%5C%5C%5Cvec%7BF%7D%3D%281.537%2A10%5E%7B-17%7D%5Chat%7Bi%7D-9.61%2A10%5E%7B-19%7D%5Chat%7Bj%7D-2.883%2A10%5E%7B-18%7D%5Chat%7Bk%7D%29N)
where the cross product can be made with the determinant method.
Hope this helps!!
In order to find total magnification of a microscope, you need to multiply the power of eyepiece and objective lens.
Hope this helps!