1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
5

Calculate the delta S rxn at 25 degrees celsius for the reaction 2NH3(g)->>N2H4(g) + H2(g). Do you know where I can find t

hese values of the S for these compounds?
Chemistry
1 answer:
Alchen [17]3 years ago
3 0
In order to find your answer you need to be <span>measuring entropy, so you will be using the following formula:
</span><span>delta S= S of (N2H4) + S of ( H2) - [2( S of NH3)]
</span>Hope this is very useful for you
You might be interested in
HELP ASAP
Bezzdna [24]
A. I think sorry if it’s wrong
5 0
3 years ago
Formic acid, which is a component of insect venom, has a ka = 1.8 ´ 10-4. what is the [h3o+] in a solution that is initially 0.1
scoray [572]
Answer is: concentratio of H₃O⁺ ions is 4.2·10⁻³ M.<span>
Chemical reaction: HCOOH(aq) + H</span>₂O(l) ⇄ HCOO⁻(aq) + H₃O⁺(aq).<span>
c(HCOOH) = 0,1 M.
[</span>H₃O⁺] = [HCOO⁻] = x.<span>
[HCOOH] = 0,1 M - x.
</span>Ka = [H₃O⁺] · [HCOO⁻] / [HCOOH].
0,00018 = x² / (0,1 M - x).<span>
Solve quadratic equation: x = </span>[H₃O⁺] = 0,0042 M.
7 0
3 years ago
1. Describe the evidence that stress plays a role in the development of schizophrenia.
valentina_108 [34]

Answer:

Research shows that patients with schizophrenia are more affected by stress physically as well as emotionally, for instance they show different changes in heart rate under stress and a greater overall risk of cardiovascular disease.

Explanation:

8 0
4 years ago
Which solute would be more effective at lowering the freezing point of water: MgCl2 and KNO3? Explain.
Phantasy [73]

Answer:

AlCl₃.

Explanation:

Adding solute to water causes depression of the boiling point.

The depression in freezing point (ΔTf) can be calculated using the relation:

ΔTf = i.Kf.m,

where, ΔTf is the depression in freezing point.

i is the van 't Hoff factor.

van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.

Kf is the molal depression constant of water.

m is the molality of the solution (m = 1.0 m, for all solutions).

(1) NaCl:

i for NaCl = no. of particles produced when the substance is dissolved/no. of original particle = 2/1 = 2.

∴ ΔTb for (NaCl) = i.Kb.m = (2)(Kf)(1.0 m) = 2(Kf).

(2) MgCl₂:

i for MgCl₂ = no. of particles produced when the substance is dissolved/no. of original particle = 3/1 = 3.

∴ ΔTb for (MgCl₂) = i.Kb.m = (3)(Kf)(1.0 m) = 3(Kf).

(3) NaCl:

i for KBr = no. of particles produced when the substance is dissolved/no. of original particle = 2/1 = 2.

∴ ΔTb for (KBr) = i.Kb.m = (2)(Kf)(1.0 m) = 2(Kf).

(4) AlCl₃:

i for AlCl₃ = no. of particles produced when the substance is dissolved/no. of original particle = 4/1 = 4.

∴ ΔTb for (CoCl₃) = i.Kb.m = (4)(Kf)(1.0 m) = 4(Kf).

So, the ionic compound will lower the freezing point the most is: AlCl₃

4 0
3 years ago
Read 2 more answers
Consider the reaction: N2(g) + O2(g) ⇄ 2NO(g) Kc = 0.10 at 2000oC Starting with initial concentrations of 0.040 mol/L of N2 and
IrinaVladis [17]

Answer:

0.011 mol/L

Explanation:

This can be solved with something called an ICE table.

I = initial

C = change

E = equilibrium

Initially, there is 0.04 M of N₂, 0.04 M of O₂, and 0 M of NO.

x amount of N₂ reacts.  Since the stoichiometry is 1:1, x amount of O₂ also reacts.  This produces 2x of NO.

After the reaction, there is 0.04-x of N₂, 0.04-x of O₂, and 2x of NO.

Here it is in table form:

\left[\begin{array}{cccc}&N2&O2&NO\\I&0.04&0.04&0\\C&-x&-x&+2x\\E&0.04-x&0.04-x&2x\end{array}\right]

Now we can use the equilibrium constant:

Kc = [NO]² / ( [N₂] [O₂] )

Substituting:

0.10 = (2x)² / ( (0.04 - x) (0.04 - x) )

Solving:

0.10 = (2x)² / (0.04 - x)²

√0.10 = 2x / (0.04 - x)

(√0.10) (0.04 - x) = 2x

(√0.10)(0.04) - (√0.10)x = 2x

(√0.10)(0.04) = 2x + (√0.10)x

(√0.10)(0.04) = (2 + √0.10)x

x = (√0.10)(0.04) / (2 + √0.10)

x = 0.0055

At equilibrium, the concentration of NO is 2x.  So the answer is:

[NO] = 2x

[NO] = 0.011

The equilibrium concentration of NO is 0.011 mol/L.

3 0
3 years ago
Other questions:
  • If the azeotropic mixture is 72% perchloric acid by mass, what is the mole percent of water in the azeotrope?
    11·1 answer
  • What happens when you add baking soda to ice
    10·1 answer
  • 1) The PPF: Draw a Production Possibilities Frontier (PPF) for the production of two goods, machine tools (a capital good) and d
    13·1 answer
  • Which statement is true about water molecules?
    10·1 answer
  • Question 6 pls I need help this is due in 2 minutes!!..
    6·2 answers
  • A sample of carbon dioxide is contained in a 250.0 mL flask at 0.930 atm and 15.4 °C. How many molecules of gas are in
    14·1 answer
  • How are Newton’s Laws evident in everyday moving objects?
    11·1 answer
  • What charge would you expect for an formed by S?
    5·1 answer
  • HELPPPPPP MEEEE‼️‼️‼️Use the equations from
    8·1 answer
  • Zn + __HCI → __ZnCl + _H2​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!