Answer:
M =2.33 kg
Explanation:
given data:
mass of piston - 2kg
diameter of piston is 10 cm
height of water 30 cm
atmospheric pressure 101 kPa
water temperature = 50°C
Density of water at 50 degree celcius is 988kg/m^3
volume of cylinder is 


mass of available in the given container is



M =2.33 kg
Answer:
u_e = 9.3 * 10^-8 J / m^3 ( 2 sig. fig)
Explanation:
Given:
- Electric Field strength near earth's surface E = 145 V / m
- permittivity of free space (electric constant) e_o = 8.854 *10^-12 s^4 A^2 / m^3 kg
Find:
- How much energy is stored per cubic meter in this field?
Solution:
- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:
u_e = 0.5*e_o * E^2
- Plug in the values given:
u_e = 0.5*8.854 *10^-12 *145^2
u_e = 9.30777 * 10^-8 J/m^3
The correct answer
would be d
Iron and carbon
hope this helps
Structure Of The Atom: Our current model of the atom can be broken down into three constituents parts – protons, neutron, and electrons. Each of these parts has an associated charge, with protons carrying a positive charge, electrons having a negative charge, and neutrons possessing no net charge.
Complete question:
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.
Answer:
Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection
so that critical flow is subject to detection
Explanation:
We are given:
Plane strain fracture toughness K 
Yield strength Y = 860 MPa
Flaw detection apparatus = 3.0mm (12in)
y = 1.0
Let's use the expression:

We already know
K= design
a = length of surface creak
Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.
Therefore
![a= \frac{1}{pi} * [\frac{k}{y*a}]^2](https://tex.z-dn.net/?f=%20a%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7Bk%7D%7By%2Aa%7D%5D%5E2%20)
Substituting figures in the expression above, we have:
![= \frac{1}{pi} * [\frac{98.9 MPa \sqrt{m}} {10 * \frac{860MPa}{2}}]^2](https://tex.z-dn.net/?f=%20%3D%20%5Cfrac%7B1%7D%7Bpi%7D%20%2A%20%5B%5Cfrac%7B98.9%20MPa%20%5Csqrt%7Bm%7D%7D%20%7B10%20%2A%20%5Cfrac%7B860MPa%7D%7B2%7D%7D%5D%5E2)
= 0.0168 m
= 17mm
Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection