Answer:
attached below
Explanation:
a) G(s) = 1 / s( s+2)(s + 4 )
Bode asymptotic magnitude and asymptotic phase plots
attached below
b) G(s) = (s+5)/(s+2)(s+4)
phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4
attached below
c) G(s)= (s+3)(s+5)/s(s+2)(s+4)
solution attached below
Answer:
M2 = 0.06404
P2 = 2.273
T2 = 5806.45°R
Explanation:
Given that p1 = 10atm, T1 = 1000R, M1 = 0.2.
Therefore from Steam Table, Po1 = (1.028)*(10) = 10.28 atm,
To1 = (1.008)*(1000) = 1008 ºR
R = 1716 ft-lb/slug-ºR cp= 6006 ft-lb/slug-ºR fuel-air ratio (by mass)
F/A =???? = FA slugf/slugaq = 4.5 x 108ft-lb/slugfx FA slugf/sluga = (4.5 x 108)FA ft-lb/sluga
For the air q = cp(To2– To1)
(Exit flow – inlet flow) – choked flow is assumed For M1= 0.2
Table A.3 of steam table gives P/P* = 2.273,
T/T* = 0.2066,
To/To* = 0.1736 To* = To2= To/0.1736 = 1008/0.1736 = 5806.45 ºR Gives q = cp(To* - To) = (6006 ft-lb/sluga-ºR)*(5806.45 – 1008)ºR = 28819500 ft-lb/slugaSetting equal to equation 1 above gives 28819500 ft-lb/sluga= FA*(4.5 x 108) ft-lb/slugaFA =
F/A = 0.06404 slugf/slugaor less to prevent choked flow at the exit
Answer:
An intense property is a physical attribute of a system that is independent of the size of the system or the quantity of material it contains. An extensive property of a system, on the other hand, is dependent on the size of the system or the amount of material in it.
Explanation:
Answer:
hello your question is incomplete attached below is the complete question
A) overall mean = 5.535, standard deviation ≈ 0.3239
B ) upper limit = 5.85, lower limit = 5.0
C) Not all the samples meet the contract specifications
D) fluctuation ( unstable Asphalt content )
Explanation:
B) The daily average asphalt content has to obtained in order to determine the upper and lower control limits using an average asphalt content of 5.5% +/- 0.5% everyday
The upper limit : 14 may = ( 5.8 + 5.1 ) / 2 = 5.85
The lower limit : 16 may = ( 5.2 + 4.8 ) / 2 = 5.0
attached below is the required plot
C ) Not all the samples meet the contract specifications and the samples that do not meet up are samples from :
15 may and 16 may . this is because their Asphalt contents are 6.2 and 4.8 respectively and sample number 18 and 20
D ) what can be observed is that the ASPHALT content fluctuates between the dates while the contract specification is fixed
Answer:
375 KPa
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 125 KPa
Initial temperature (T₁) = 300 K
Final temperature (T₂) = 900 K
Final pressure (P₂) =?
The new (i.e final) pressure of the gas can be obtained as follow:
P₁/T₁ = P₂/T₂
125 / 300 = P₂ / 900
Cross multiply
300 × P₂ = 125 × 900
300 × P₂ = 112500
Divide both side by 300
P₂ = 112500 / 300
P₂ = 375 KPa
Thus, the new pressure of the gas is 375 KPa