1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dlinn [17]
3 years ago
15

What is the mass of the same dragster body (volume of 150 cm3) if it is made of basswood instead?

Engineering
1 answer:
dusya [7]3 years ago
8 0

Answer:

the answer is 61.5

Explanation:

You might be interested in
Lynx eat snowshoe hares, and snowshoes hears eat plants. Which term can be applied to the lynx in this food chain example? Prima
erastova [34]

Answer:

primary consumer because YES

3 0
2 years ago
The 30-kg gear is subjected to a force of P=(20t)N where t is in seconds. Determine the angular velocity of the gear at t=4s sta
tatyana61 [14]

Answer:

\omega =\frac{24}{1.14375}=20.983\frac{rad}{s}

Explanation:

Previous concepts

Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular  momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

H_o =r x mv=rxL

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =

MO, where MO is the moment of the force F about point O. The equation expressing the rate of change  of angular momentum is this one:

MO = H˙ O

Principle of Angular Impulse and Momentum

The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular  momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

\int_{t_1}^{t_2}M_O dt = \int_{t_1}^{t_2}H_O dt=H_0t2 -H_0t1

Solution to the problem

For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is I_o =mK^2_o =30kg(0.125m)^2 =0.46875 kgm^2".

If we analyze the staritning point we see that the initial velocity can be founded like this:

v_o =\omega r_{OIC}=\omega (0.15m)

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

H_Ai +\sum \int_{t_i}^{t_f} M_A dt =H_Af

0+\sum \int_{0}^{4} 20t (0.15m) dt =0.46875 \omega + 30kg[\omega(0.15m)](0.15m)

And if we integrate the left part and we simplify the right part we have

1.5(4^2)-1.5(0^2) = 0.46875\omega +0.675\omega=1.14375\omega

And if we solve for \omega we got:

\omega =\frac{24}{1.14375}=20.983\frac{rad}{s}

8 0
3 years ago
Turning a screw with a screwdriver pushes the screw into the wood. The force is __________ over many turns
IrinaK [193]

Answer:

repeated?

Explanation:

not really sure what type of answer choices you have

5 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
What is a microwave transmitter?a) A technology that uses active or passive tags in the form of chips or smart labels that can s
Blababa [14]

Answer:

b) Commonly used to transmit network signals over great distances.

Explanation:

The transmission of information or data by using microwave radio waves is known as microwave transmission. Microwave transmitter is commonly used to transmit network signals over great distances. It is an electronic device that transmits and receives radio frequency signals ranging from 1GHz to 100GHz.

The microwave transmitter has a wide range of applications and these includes, radio stations, television stations, mobile phones, radio astronomy, radar,

5 0
3 years ago
Read 2 more answers
Other questions:
  • What are the disadvantages of using 3D ink jet printing ??
    8·1 answer
  • Members of the student council have been asked by their
    5·1 answer
  • Ohm's law states that the current (I) in amps equals the voltage (E) in volts decided by the resistance (R) in ohm's. If you con
    15·1 answer
  • All people<br><br><br>id 5603642259 pd 123456<br>on z o o m​
    15·1 answer
  • 10) A pressure sensor consisting of a diaphragm with strain gauges bonded to its surface has the following information in its sp
    12·1 answer
  • What is another term for the notes that a reader can add to text in a word-processing document?
    11·2 answers
  • You guys want to talk at seven I am free then
    7·2 answers
  • Does anyone know the answer to this
    5·2 answers
  • 1) Which step in the Design Process utilizes technical drawings to provide information necessary to
    8·1 answer
  • It is possible to design a reactor where the scy conductor and the nitrogen/ammonia electrode operate at different temperatures.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!