Answer:
Yes
Explanation:
As we know that heat transfer take place from high temperature body to low temperature body.
In the given problem ,the temperature of the air is high as compare to the temperature of can of bear ,so the heat transfer will take place from air to can of bear and at the last stage when temperature of can of bear will become to the temperature of air then heat transfer will be stop.Because temperature of the both body will become at the same and this stage is called thermal equilibrium.
So an office worker claim is correct.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
2.379m
Explanation:
The width = 23m
The depth = 3m
The radius is denoted as R
The wetted area is = A
The perimeter perimeter = P
Hydraulic radius
R = A/P
The area of a rectangular channel
= Width multiplied by Depth
A = 23x3
A = 69m²
Perimeter = (2x3)+23
P = 6+23
P= 29
Hydraulic radius R = 69/29
= 2.379m
This answers the question
Thank you!