Answer:
5.2 m
Explanation:
from the question we are given the following
depth of pool (d) = 3.2 m
height of laser above the pool (h) = 1 m
point of entry of laser beam from edge of water (l) = 2.5 m
we first have to calculate the angle at which the laser beam enters the water (∝),
tan ∝ = \frac{1}{2.2}
∝ = 24.44 degrees
from the attached diagram, the angle with the normal (i) = 90 - 24.4 = 65.56 degrees
lets assume it is a red laser which has a refractive index of 1.331 in water, and with this we can find the angle of refraction (r) using the formula below
refractive index = \frac{sin i}{sin r}
1.331 = \frac{sin 65.56}{sin r}
r = 43.16 degrees
we can get the distance (x) from tan r = \frac{x}{3.2}
tan 43.16 = \frac{x}{3.2}
x = 3 m
To get the total distance we need to add the value of x to 2.2 m
total distance = 3 + 2.2 = 5.2 m
Answer:

Explanation:
<u>Given Data:</u>
Cycles = c = 3 cycles
Time = t = 2 seconds
<u>Required:</u>
Time period = T = ?
<u>Formula:</u>
1) f = c/t
2) T = 1/f
<u>Solution:</u>
<u>Finding frequency first:</u>
f = c / t
f = 3/2
f = 1.5 Hz
<u>Now, finding period:</u>
T = 1/f
T = 1 / 1.5
T = 0.67 seconds
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
Answer 3: When a balloon goes up higher in the air, its size will increase. Since there's less air in the upper atmosphere, there's less stuff pushing back on the balloon, and hence the pressure is lower, which allows the balloon to expand
Answer: C
Explanation:
As the balloon rises, the gas inside the balloon expands because the atmospheric pressure surrounding the balloon drops. The atmosphere is 100 to 200 times less dense at the float altitudes than on the ground. and as the air is heated inside the balloon it causes it to rise upwards (because it is lighter than the cooler air on the outside). When the pilot needs to bring the balloon down again, he simply reduces the temperature of the air inside the balloon causing it to slowly descend.
Answer:
C) equal to zero
Explanation:
Electric potential is calculated by multiplying constant and charge, then dividing it by distance. The location that we want to measure is equidistant from two particles, mean that the distance from both particles is the same(r2=r1). The charges of the particle have equal strength of magnitude but the opposite sign(q2=-q1). The resultant will be:V = kq/r
ΔV= V1 + V2= kq1/r1 + kq2/r2
ΔV= V1 + V2= kq1/r1 + k(-q1)/(r)1
ΔV= kq1/r1 - kq1/r1
ΔV=0
The electric potential equal to zero
Answer The Moon has synchronous rotation: it's rotation period is the same as its period of revolution
Explanation:
The Moon has synchronous rotation: it's rotation period is the same as its period of revolution