1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natta225 [31]
3 years ago
6

Each time you dumped the pennies, one half-life passed; it has been shown that the half-life for this radioactive isotope is 20

years
In the year 2000, an archaeology team unearths pottery and is using this isotope for radiometric dating to place the age of the pottery
It is shown that 95% of the nuclei have decayed
Approximately how long ago was the pottery made?
Physics
1 answer:
tresset_1 [31]3 years ago
3 0
The exponential decay function is shown as:

At = Ao*2^(-t/h)

Where:

At = Final amount
Ao = original amount
t = time
h = years for half-life to occur

We are not given the original and final amounts, but we are told that after the certain amount of time had passed, only 5% had remained. So if we were to isolate At and Ao in one side of the equation, such that: At/Ao = 0.05, we can solve for the missing variable, which is t.

Substituting:

<span>At/Ao = 2^(-t/h)
</span>0.05 = <span>2^(-t/20)
t = 86.44 years

Therefore, the pottery was made approximately 86.44 years ago.</span>
You might be interested in
Which state helps produce light in fluorescent light bulbs?
spin [16.1K]
The answer is D plasma
5 0
3 years ago
A beam of light has a wavelength of 650 nm in vacuum. (a) What is the speed of this light in a liquid whose index of refraction
Lady_Fox [76]

Answer:

The speed of this light and wavelength in a liquid are 2.04\times10^{8}\ m/s and 442 nm.

Explanation:

Given that,

Wavelength = 650 nm

Index refraction = 1.47

(a). We need to calculate the speed

Using formula of speed

n = \dfrac{c}{v}

Where, n = refraction index

c = speed of light in vacuum

v = speed of light in medium

Put the value into the formula

1.47=\dfrac{3\times10^{8}}{v}

v=\dfrac{3\times10^{8}}{1.47}

v= 2.04\times10^{8}\ m/s

(b). We need to calculate the wavelength

Using formula of wavelength

n=\dfrac{\lambda_{0}}{\lambda}

\lambda=\dfrac{\lambda_{0}}{n}

Where, \lambda_{0} = wavelength in vacuum

\lambda = wavelength in medium

Put the value into the formula

\lambda=\dfrac{650\times10^{-9}}{1.47}

\lambda=442\times10^{-9}\ m

Hence, The speed of this light and wavelength in a liquid are 2.04\times10^{8}\ m/s and 442 nm.

3 0
3 years ago
Suppose you read in the newspaper that a new planet has been found. Its average speed in its orbit is 33 kilometers per second (
Harlamova29_29 [7]

Answer:

E. Kepler's second law says the planet must move fastest when it is closest, not  when it is farthest away.

Explanation:

We can answer this question by using Kepler's second law of planetary motion, which states that:

"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"

This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).

In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is

E. Kepler's second law says the planet must move fastest when it is closest, not  when it is farthest away.

5 0
3 years ago
Justin notices a particular type of caterpillar feeds only on cottonwood trees in his neighborhood.In which way has Justin incre
Anna007 [38]
Justin notices a particular type of caterpillar feeds only on cottonwood trees in his neighborhood.In which way has Justin increased his scientific knowledge, Justin increased his powers of scientific observation. His observation is empirical evidence. Empirical relies on observation  and experimentation.

It will help you..........

7 0
2 years ago
Which bright solar feature is shown in the picture above?
Ghella [55]

Answer : (B) Prominence

Explanation :

A large, glittering and gaseous characteristic which is extending outward from the surface of the sun is called <em>Prominence</em>.

<em>Photosphere</em> is one of the layer of sun where the prominence are anchored and then they move into the corona of the sun.

<em>Corona</em> is a region in the surface of the sun which is the constituent of hot ionized gases (plasma).

The prominence consists of colder plasma and this prominence plasma is much more shining and denser as compared to coronal plasma.

Hence, the correct option is (B) Prominence.

6 0
3 years ago
Read 2 more answers
Other questions:
  • La frecuencia de una onda es 60Hz y su velocidad, 30 m/s. Calcula su longitud de onda
    9·1 answer
  • When white light is viewed through sodium vapor in a spectroscope the spectrum is continuous?
    7·2 answers
  • A light wave travels through water (n=1.33) at an angle of 35º. What angle
    7·2 answers
  • An airplane with a speed of 92.3 m/s is climbing upward at an angle of 51.1 ° with respect to the horizontal. When the plane's a
    7·1 answer
  • The volume of the lung 0.0024m^3 following exhalation and the pressure is 101.70KPa. Calculate the volume of the lungs during in
    5·1 answer
  • What does elastic collision mean?
    12·1 answer
  • 13. When you say that something is a factor, you mean that it is an) (factor)
    7·1 answer
  • The moon has a mass of 7.34 . 1022 kg and a radius of 1.74. 10 meters. If you have a mass of 66
    15·1 answer
  • even though the sun is so much bigger than the moon, why does the moon have a stronger effect on tides?
    15·1 answer
  • A bullet of mass m and speed v is fired at, hits and passes completely through a pendulum bob of mass M on the end of a stiff ro
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!