Evidence: Data gathered
Experiment: Looking through a telescope
Observations: Testing what happens
Reasoning: Thinking a problem through
I believe that these should be correct.
Hoping you pass!
Answer:
Final velocity (v) = 36 m/s
Distance traveled (s) = 2,160 m
Explanation:
Given:
Initial velocity (u) = 0
Acceleration (a) = 0.3 m/s
Time travel (t) = 2 minutes = 120 seconds
Find:
Final velocity (v) = ?
Distance traveled (s) = ?
Computation:
v = u + at
v = 0 + 0.3(120)
v = 0.3(120)
v = 36 m/s
Final velocity (v) = 36 m/s
Distance traveled (s) = ut + (1/2)at²
Distance traveled (s) = (0.5)(0.3 × 120 × 120)
Distance traveled (s) = 2,160 m
Answer:
<em>20.08 Volts</em>
Explanation:
<u>Parallel Connection of Capacitors</u>
The voltage across any two elements connected in parallel is the same. If the elements are capacitors, then each voltage is


They are both the same after connecting them, thus

Or, equivalently

The total charge of both capacitors is

We can compute the total charge by using the initial conditions where both capacitors were disconnected:

Now we compute Q1 from the equation above

The final voltage of any of the capacitors is

<h2>Answer:</h2>
0
<h2>Explanation:</h2>
Since the current carrying wire is placed along the axis of the cylinder, according to the right hand rule, the magnetic field will be tangent to the surface of the cylinder. Therefore, there is no magnetic field through the cylinder.
Remember that the magnetic flux through a given area is the total magnetic field passing through that area. Since there is not magnetic field through the cylinder, the total magnetic flux is therefore zero (0).