Answer : The maximum concentration of silver ion is 
Solution : Given,
for AgBr = 
Concentration of NaBr solution = 0.1 m
The equilibrium reaction for NaBr solution is,

The concentration of NaBr solution is 0.1 m that means,
![[Na^+]=[Br^-]=0.1m](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D%3D%5BBr%5E-%5D%3D0.1m)
The equilibrium reaction for AgBr is,

At equilibrium s s
The expression for solubility product constant for AgBr is,
![K_{sp}=[Ag^+][Br^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D)
The concentration of
= s
The concentration of
= 0.1 + s
Now put all the given values in
expression, we get

By rearranging the terms, we get the value of 's'

Therefore, the maximum concentration of silver ion is
.