Answer:
1) an observer in B 'sees the two simultaneous events
2)observer B sees that the events are not simultaneous
3) Δt = Δt₀ /√ (1 + v²/c²)
Explanation:
This is an exercise in simultaneity in special relativity. Let us remember that the speed of light is the same in all inertial systems
1) The events are at rest in the reference system S ', so as they advance at the speed of light which is constant, so it takes them the same time to arrive at the observation point B' which is at the point middle of the two events
Consequently an observer in B 'sees the two simultaneous events
2) For an observer B in system S that is fixed on the Earth, see that the event in A and B occur at the same instant, but the event in A must travel a smaller distance and the event in B must travel a greater distance since the system S 'moves with velocity + v. Therefore, since the velocity is constant, the event that travels the shortest distance is seen first.
Consequently observer B sees that the events are not simultaneous
3) let's calculate the times for each event
Δt = Δt₀ /√ (1 + v²/c²)
where t₀ is the time in the system S' which is at rest for the events
Answer:
The minimum diameter of the stick to bear the normal stress as 100 psi is 0.1785 in.
Explanation:
Taking moment along point A

Also normal stress is given as 100 psi
Now

The minimum diameter of the stick to bear the normal stress as 100 psi is 0.1785 in.
Explanation:
the correct answer is C.
if there is no wind resistance; in vaccum both will hit the ground at the same time.
hope this helps you and if possible please mark me as BRAINLIST.
Answer:
31.55 m/s
Explanation:
Let the initial velocity of the arrow is u metre per second.
Angle of projection, θ = 40 degree
range = 100 m
Use the formula for the range.

100 = u^2 Sin(2 x 40) / 9.8
100 x 9.8 = u^2 Sin 80
u^2 = 995.11
u = 31.55 m/s
Answer:
Wash your hands with warm water and soap.