C)shorter wavelength and higher energy
frequency is inversely proportional to wavelength
frequency is directly proportional to Energy
PH of a solution will be <span>higher than 7
</span>
Ammonium cyanide is a salt formed by hydrogen cyanide and ammonia. Ammonia is a weak base and hydrogen cyanide is a weak acid.
NH₄CN + H₂O ⇒ NH₃ + HCN
NH₄⁺ + H₂O -----> H₃O⁺ + NH₃
CN⁻ + H₂O -----> HCN + OH⁻
Although both compounds are weak electrolytes, NH₃ is somewhat stronger base than HCN is a strong acid, so the solution reacts alkaline. We can prove this using Ka and Kb values:
Ka(HCN) = 4.9 x × 10⁻¹⁰
Kb(NH₃) = 1.8 × 10⁻⁵<span>
Kw= </span>1.0 × 10⁻¹⁴
Let's first calculate Ka for NH₄⁺:
Ka(NH₄⁺) x Kb(NH₃<span>) = pKw
</span>Ka(NH₄⁺) = Kw/Kb(NH₃) = 5.6 x 10⁻¹⁰
Then, Kb for CN⁻:
Kb(CN⁻) x Ka(HCN) = pKw
Kb(CN⁻) = Kw/Ka(HCN) = 2 x 10⁻⁵
From this, we can see that the acid constant NH4⁺ is much lower than the base constant of CN⁻, which will say that the solution of NH₄CN will react slightly alkaline because of the higher presence of hydroxyl ions in solution.
Answer: Benzene is less reactive than methylbenzoate and more reactive than Nitrobenzene
Explanation:
This is because the methyl group on the benzene ring is an electron donating group leading to the activation of the ring and subsequently leading to more canonical resonance structure at the intermediate stage of the reaction enhancing the faster reactivity
However for the Nitrobenzene the nitro group is an electron withdrawing group leading to a slower activation and less resonance canonical structure at the reaction intermediate leading to a slower reaction than the reaction of benzene without the nitro group
Answer: The salt produced will be 
Explanation:
During a neutralization reaction, an acid reacts with a base for producing the correspondent salt, and water.
The strong acids release all the protons avalaible when are dissolved, such as sulfuric acid. As you can see, sulfuric acid have 2 protons ready for being released (
); and those places have to be occcupied for other ions equivalents to the H+: K+ from KOH in this case.
Therefore the answer will be
.
When a magnet moves near a coil of wire it can cause an A. electric current