Explanation:
It is given that,
Number of turns, N = 200
Area of cross section, A = 8.5 cm²
Magnetic field is directed out of the paper and is, B = 0.06 T
The magnetic field is out of the paper decreases to 0.02 T in 12 milliseconds. We need to find the direction of current induced. The induced emf is given by :

Since, 
I is the induced current

According to Lenz's law, the direction of induced current is such that it always opposes the change in current that causes it.
Here, the field is directed out of the plane of the paper, this gives the induced current in counterclockwise direction.
Achieve a full outer shell
At the player's maximum height, their velocity is 0. Recall that

which tells us the player's initial velocity
is

The player's height at time
is given by

so we find their airtime to be

<span><span>Velocity is a vector, and the initial and final ones are in opposite directions.
There must have been acceleration in order to change the direction of motion.</span>
A) No. The initial and final velocities are the same.
This is all wrong, and not the correct choice.
It's "Yes", and the initial and final velocities are NOT the same.
B) Yes. The ball had to slow down in order to change direction.
This is poor, and not the correct choice.
The "Yes" is correct, but the explanation is bad.
Acceleration does NOT require any change in speed.
C) No. Acceleration is the change in velocity. The ball's velocity is constant.
This is all wrong, and not the correct choice.
It's "Yes", there IS acceleration, and the ball's velocity is NOT constant.
D) Yes. Even though the initial and final velocities are the same, there is a change in direction for the ball.
This choice is misleading too.
The "Yes" is correct ... there IS acceleration.
The change in direction is the reason.
The initial and final velocities are NOT the same. Only the speeds are.
</span>