Water waves are an example of waves that involve a combination of both longitudinal and transverse motions. As a wave travels through the waver, the particles travel in clockwise circles. The radius of the circles decreases as the depth into the water increases.
Answer:
True
Explanation:
As the formula for magnitude of a vector v and their components
is

Since
, this means the sum of them,
, is always greater or equal to 
Answer:
pressure in cylinder A must be one third of pressure in cylinder B
Explanation:
We are told that the temperature and quantity of the gases in the 2 cylinders are same.
Thus, number of moles and temperature will be the same for both cylinders.
To this effect we will use the formula for ideal gas equation which is;
PV = nRT
Where;
P is prrssure
V is volume
n is number of moles
T is temperature
R is gas constant
We are told that Cylinder A has three times the volume of cylinder .
Thus;
V_a = 3V_b
For cylinder A;
Pressure = P_a
Volume = 3V_b
Number of moles = n
Thus;
P_a × 3V_b = nRT
For cylinder B;
Pressure = P_b
Volume = V_b
Number of moles = n
Thus,
P_b × V_b = nRT
Combining the equations for both cylinders, we have;
P_a × 3V_b = P_b × V_b
V_b will cancel out to give;
3P_a = P_b
Divide both sides by 3 to get;
P_a = ⅓P_b
Thus, pressure in cylinder A must be one third of pressure in cylinder B
Answer:
Explanation:
For this problem we must use Newton's second law where force is gravitational attraction
F = m a
Since movement is circular, acceleration is centripetal.
a = v2 / r
Let's replace
G m M / r² = m v² / r
G M r = v²
The distance r is from the center of the planet
r = R + h
v = √ GM / (R + h)
If the friction force is not negligible
F - fr = m a
Where the friction force must have some functional relationship, for example
Fr = b v + c v² +…
Suppose we are high enough for the linear term to derive the force of friction
G m M / r - (m b v + m c v2) = m v2
G M / r - b v = v²
We see that the solution of the problem gives lower speeds and that change over time.
To compensate for this friction force, the motors should be intermittently suspended to recover speed.
That's true.
Netwon's second law states that the resultant of the forces F acting on a body is equal to the product between its mass m and its acceleration a:

This means that if the net force acting on an object is different from zero (term on the left), than the acceleration of the object (term on the right) must be different from zero as well, and therefore the body is accelerating.
In particular, both F and a in the equation are vectors: this means that if the acceleration is positive, F and a have the same direction. In this problem, the acceleration is positive (because the object is speeding up), therefore the force and the acceleration have same direction.